搜索
[FreeAllCourse.Com] Udemy - Complete Machine Learning and Data Science Zero to Mastery
磁力链接/BT种子名称
[FreeAllCourse.Com] Udemy - Complete Machine Learning and Data Science Zero to Mastery
磁力链接/BT种子简介
种子哈希:
efb18a1509c7236abbca990bc7b38e5c3269f8d0
文件大小:
19.23G
已经下载:
498
次
下载速度:
极快
收录时间:
2021-03-18
最近下载:
2024-12-12
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:EFB18A1509C7236ABBCA990BC7B38E5C3269F8D0
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
the thing 2011+ french
vrbangers
福利姬许愿
lkjfdsks
legalprono
新加坡 网红
tora-tora+platinum
ani 在地下城尋求邂逅是否搞錯了什麼 第四季
破地狱
眼镜斯文
最新绿帽门事件淫荡老公带着媳妇
失去理
【经典绝版】闲鱼卖家出售 真人妇科检查视频
07.07.2024
爱的礼物
玩到一半拿出震动棒一起伺候骚逼
2016-05
叶倩彤
啄木鸟+头等舱
ariana reychers
rpa教程
欧美大奶
the sympathizer
襲撮膀胱圧迫生搾り1
顶级尤物台妹黑丝吊带
你老婆没我骚
金发女优
5.2002
kathie
小仙女+肉棒
文件列表
5. Data Science Environment Setup/8. Windows Environment Setup 2.mp4
238.7 MB
9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.mp4
199.4 MB
9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.mp4
184.7 MB
16. Career Advice + Extra Bits/9. CWD Git + Github.mp4
184.7 MB
9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters.mp4
184.1 MB
14. Neural Networks Deep Learning/32. Training Your Deep Neural Network.mp4
174.7 MB
16. Career Advice + Extra Bits/3. What If I Don't Have Enough Experience.mp4
168.8 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.mp4
166.9 MB
9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together.mp4
166.0 MB
14. Neural Networks Deep Learning/34. Make And Transform Predictions.mp4
162.5 MB
14. Neural Networks Deep Learning/21. Turning Data Into Batches 2.mp4
156.6 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.mp4
153.3 MB
5. Data Science Environment Setup/5. Mac Environment Setup.mp4
151.4 MB
14. Neural Networks Deep Learning/37. Visualizing And Evaluate Model Predictions 2.mp4
150.8 MB
9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data.mp4
150.2 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.mp4
149.2 MB
14. Neural Networks Deep Learning/41. Making Predictions On Test Images.mp4
147.7 MB
14. Neural Networks Deep Learning/40. Training Model On Full Dataset.mp4
146.6 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.mp4
146.1 MB
11. Milestone Project 1 Supervised Learning (Classification)/9. Finding Patterns 3.mp4
144.6 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.mp4
144.5 MB
9. Scikit-learn Creating Machine Learning Models/14. Getting Your Data Ready Handling Missing Values With Scikit-learn.mp4
143.5 MB
9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.mp4
141.6 MB
14. Neural Networks Deep Learning/15. Preparing The Images.mp4
140.4 MB
16. Career Advice + Extra Bits/11. Contributing To Open Source.mp4
136.6 MB
14. Neural Networks Deep Learning/35. Transform Predictions To Text.mp4
136.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/20. Finding The Most Important Features.mp4
133.7 MB
14. Neural Networks Deep Learning/39. Saving And Loading A Trained Model.mp4
133.2 MB
5. Data Science Environment Setup/6. Mac Environment Setup 2.mp4
131.6 MB
8. Matplotlib Plotting and Data Visualization/18. Customizing Your Plots 2.mp4
129.6 MB
14. Neural Networks Deep Learning/22. Visualizing Our Data.mp4
127.9 MB
14. Neural Networks Deep Learning/25. Building A Deep Learning Model.mp4
127.8 MB
9. Scikit-learn Creating Machine Learning Models/41. Tuning Hyperparameters 3.mp4
127.7 MB
14. Neural Networks Deep Learning/42. Submitting Model to Kaggle.mp4
127.2 MB
8. Matplotlib Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.mp4
125.6 MB
14. Neural Networks Deep Learning/36. Visualizing Model Predictions.mp4
125.1 MB
14. Neural Networks Deep Learning/43. Making Predictions On Our Images.mp4
125.0 MB
9. Scikit-learn Creating Machine Learning Models/19. Choosing The Right Model For Your Data 3 (Classification).mp4
124.6 MB
16. Career Advice + Extra Bits/10. CWD Git + Github 2.mp4
124.1 MB
9. Scikit-learn Creating Machine Learning Models/46. Putting It All Together 2.mp4
122.5 MB
9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 2.mp4
122.4 MB
14. Neural Networks Deep Learning/9. Importing TensorFlow 2.mp4
122.4 MB
14. Neural Networks Deep Learning/14. Loading Our Data Labels.mp4
120.4 MB
14. Neural Networks Deep Learning/38. Visualizing And Evaluate Model Predictions 3.mp4
118.7 MB
16. Career Advice + Extra Bits/12. Contributing To Open Source 2.mp4
118.5 MB
11. Milestone Project 1 Supervised Learning (Classification)/14. Tuning Hyperparameters.mp4
113.2 MB
14. Neural Networks Deep Learning/16. Turning Data Labels Into Numbers.mp4
112.7 MB
6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.mp4
111.7 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.mp4
111.5 MB
14. Neural Networks Deep Learning/27. Building A Deep Learning Model 3.mp4
111.1 MB
14. Neural Networks Deep Learning/26. Building A Deep Learning Model 2.mp4
111.0 MB
11. Milestone Project 1 Supervised Learning (Classification)/4. Step 1~4 Framework Setup.mp4
110.6 MB
14. Neural Networks Deep Learning/19. Preprocess Images 2.mp4
110.2 MB
6. Pandas Data Analysis/9. Manipulating Data.mp4
110.1 MB
9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.mp4
109.9 MB
17. Learn Python/1. What Is A Programming Language.mp4
109.9 MB
11. Milestone Project 1 Supervised Learning (Classification)/15. Tuning Hyperparameters 2.mp4
109.2 MB
5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 2.mp4
108.9 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.mp4
108.4 MB
11. Milestone Project 1 Supervised Learning (Classification)/13. TuningImproving Our Model.mp4
107.8 MB
14. Neural Networks Deep Learning/2. Deep Learning and Unstructured Data.mp4
107.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.mp4
106.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/3. Project Environment Setup.mp4
105.7 MB
11. Milestone Project 1 Supervised Learning (Classification)/8. Finding Patterns 2.mp4
104.8 MB
8. Matplotlib Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.mp4
103.6 MB
11. Milestone Project 1 Supervised Learning (Classification)/11. Choosing The Right Models.mp4
101.1 MB
9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Machine Learning Model 2 (Cross Validation).mp4
100.6 MB
6. Pandas Data Analysis/4. Series, Data Frames and CSVs.mp4
100.0 MB
9. Scikit-learn Creating Machine Learning Models/37. Evaluating A Model With Scikit-learn Functions.mp4
99.4 MB
17. Learn Python/16. Variables.mp4
98.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.mp4
98.0 MB
17. Learn Python/2. Python Interpreter.mp4
98.0 MB
8. Matplotlib Plotting and Data Visualization/17. Customizing Your Plots.mp4
96.7 MB
9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Cross Validation and Scoring Parameter.mp4
95.9 MB
7. NumPy/13. Exercise Nut Butter Store Sales.mp4
95.8 MB
6. Pandas Data Analysis/11. Manipulating Data 3.mp4
95.4 MB
9. Scikit-learn Creating Machine Learning Models/38. Improving A Machine Learning Model.mp4
95.4 MB
14. Neural Networks Deep Learning/18. Preprocess Images.mp4
94.5 MB
14. Neural Networks Deep Learning/13. Optional Reloading Colab Notebook.mp4
93.0 MB
9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.mp4
92.6 MB
14. Neural Networks Deep Learning/20. Turning Data Into Batches.mp4
92.0 MB
9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Classification Model 6 (Classification Report).mp4
91.5 MB
9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model (Score).mp4
91.4 MB
9. Scikit-learn Creating Machine Learning Models/16. Choosing The Right Model For Your Data 2 (Regression).mp4
91.1 MB
6. Pandas Data Analysis/10. Manipulating Data 2.mp4
90.7 MB
8. Matplotlib Plotting and Data Visualization/3. Importing And Using Matplotlib.mp4
90.6 MB
14. Neural Networks Deep Learning/28. Building A Deep Learning Model 4.mp4
90.5 MB
11. Milestone Project 1 Supervised Learning (Classification)/21. Reviewing The Project.mp4
90.3 MB
7. NumPy/16. Turn Images Into NumPy Arrays.mp4
90.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.mp4
90.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.mp4
89.8 MB
7. NumPy/12. Dot Product vs Element Wise.mp4
88.0 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.mp4
86.7 MB
18. Learn Python Part 2/45. Modules in Python.mp4
86.2 MB
8. Matplotlib Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.mp4
86.1 MB
17. Learn Python/5. Python 2 vs Python 3.mp4
86.1 MB
8. Matplotlib Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.mp4
86.0 MB
7. NumPy/8. Manipulating Arrays.mp4
84.6 MB
14. Neural Networks Deep Learning/11. Using A GPU.mp4
84.5 MB
13. Data Engineering/9. Optional OLTP Databases.mp4
83.6 MB
11. Milestone Project 1 Supervised Learning (Classification)/5. Getting Our Tools Ready.mp4
83.2 MB
14. Neural Networks Deep Learning/30. Evaluating Our Model.mp4
83.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.mp4
83.1 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.mp4
83.1 MB
7. NumPy/4. NumPy DataTypes and Attributes.mp4
82.8 MB
9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 4 (Confusion Matrix).mp4
81.5 MB
1. Introduction/1. Course Outline.mp4
81.0 MB
6. Pandas Data Analysis/6. Describing Data with Pandas.mp4
79.2 MB
9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.mp4
78.8 MB
8. Matplotlib Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.mp4
78.3 MB
18. Learn Python Part 2/2. Conditional Logic.mp4
78.2 MB
14. Neural Networks Deep Learning/4. Setting Up Google Colab.mp4
77.8 MB
14. Neural Networks Deep Learning/33. Evaluating Performance With TensorBoard.mp4
77.8 MB
17. Learn Python/10. Numbers.mp4
76.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/10. Preparing Our Data For Machine Learning.mp4
76.1 MB
18. Learn Python Part 2/48. Packages in Python.mp4
75.9 MB
6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.mp4
75.9 MB
11. Milestone Project 1 Supervised Learning (Classification)/17. Evaluating Our Model.mp4
75.1 MB
5. Data Science Environment Setup/13. Jupyter Notebook Walkthrough 3.mp4
74.9 MB
7. NumPy/7. Viewing Arrays and Matrices.mp4
74.1 MB
9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 1 (R2 Score).mp4
73.8 MB
8. Matplotlib Plotting and Data Visualization/6. Histograms And Subplots.mp4
73.1 MB
17. Learn Python/26. Built-In Functions + Methods.mp4
72.8 MB
7. NumPy/9. Manipulating Arrays 2.mp4
71.2 MB
18. Learn Python Part 2/36. Pure Functions.mp4
70.6 MB
5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough.mp4
70.6 MB
8. Matplotlib Plotting and Data Visualization/5. Scatter Plot And Bar Plot.mp4
70.3 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.mp4
70.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/6. Exploring Our Data.mp4
70.1 MB
6. Pandas Data Analysis/13. How To Download The Course Assignments.mp4
70.0 MB
7. NumPy/5. Creating NumPy Arrays.mp4
70.0 MB
9. Scikit-learn Creating Machine Learning Models/21. Making Predictions With Our Model.mp4
69.7 MB
14. Neural Networks Deep Learning/17. Creating Our Own Validation Set.mp4
69.7 MB
9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 2 (ROC Curve).mp4
69.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/19. Evaluating Our Model 3.mp4
68.0 MB
17. Learn Python/48. Sets 2.mp4
67.4 MB
17. Learn Python/3. How To Run Python Code.mp4
67.0 MB
9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.mp4
66.8 MB
9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 5 (Confusion Matrix).mp4
66.7 MB
11. Milestone Project 1 Supervised Learning (Classification)/7. Finding Patterns.mp4
66.4 MB
18. Learn Python Part 2/24. return.mp4
66.1 MB
11. Milestone Project 1 Supervised Learning (Classification)/16. Tuning Hyperparameters 3.mp4
66.1 MB
17. Learn Python/34. List Methods.mp4
64.8 MB
3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.mp4
63.4 MB
8. Matplotlib Plotting and Data Visualization/9. Plotting From Pandas DataFrames.mp4
63.3 MB
17. Learn Python/12. DEVELOPER FUNDAMENTALS I.mp4
62.6 MB
8. Matplotlib Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.mp4
59.7 MB
9. Scikit-learn Creating Machine Learning Models/44. Saving And Loading A Model 2.mp4
59.5 MB
9. Scikit-learn Creating Machine Learning Models/20. Fitting A Model To The Data.mp4
59.3 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.mp4
58.2 MB
11. Milestone Project 1 Supervised Learning (Classification)/12. Experimenting With Machine Learning Models.mp4
58.0 MB
9. Scikit-learn Creating Machine Learning Models/34. Evaluating A Regression Model 3 (MSE).mp4
57.6 MB
9. Scikit-learn Creating Machine Learning Models/22. predict() vs predict_proba().mp4
57.0 MB
7. NumPy/11. Reshape and Transpose.mp4
56.1 MB
18. Learn Python Part 2/41. List Comprehensions.mp4
55.9 MB
18. Learn Python Part 2/47. Optional PyCharm.mp4
55.6 MB
9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model.mp4
55.2 MB
18. Learn Python Part 2/40. reduce().mp4
54.8 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.mp4
54.6 MB
14. Neural Networks Deep Learning/6. Uploading Project Data.mp4
54.5 MB
7. NumPy/6. NumPy Random Seed.mp4
54.4 MB
7. NumPy/10. Standard Deviation and Variance.mp4
53.6 MB
17. Learn Python/30. Exercise Password Checker.mp4
53.6 MB
9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 3 (ROC Curve).mp4
53.1 MB
17. Learn Python/28. Exercise Type Conversion.mp4
52.8 MB
18. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.mp4
52.7 MB
14. Neural Networks Deep Learning/23. Preparing Our Inputs and Outputs.mp4
52.5 MB
17. Learn Python/32. List Slicing.mp4
52.3 MB
18. Learn Python Part 2/18. Our First GUI.mp4
52.0 MB
8. Matplotlib Plotting and Data Visualization/19. Saving And Sharing Your Plots.mp4
51.9 MB
17. Learn Python/23. Formatted Strings.mp4
51.6 MB
17. Learn Python/24. String Indexes.mp4
51.5 MB
8. Matplotlib Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.mp4
51.4 MB
18. Learn Python Part 2/21. Functions.mp4
51.0 MB
18. Learn Python Part 2/49. Different Ways To Import.mp4
50.3 MB
5. Data Science Environment Setup/7. Windows Environment Setup.mp4
50.2 MB
17. Learn Python/4. Our First Python Program.mp4
49.5 MB
18. Learn Python Part 2/8. Exercise Logical Operators.mp4
48.9 MB
14. Neural Networks Deep Learning/12. Optional GPU and Google Colab.mp4
48.1 MB
14. Neural Networks Deep Learning/29. Summarizing Our Model.mp4
47.6 MB
9. Scikit-learn Creating Machine Learning Models/23. Making Predictions With Our Model (Regression).mp4
47.1 MB
3. Machine Learning and Data Science Framework/11. Modelling - Comparison.mp4
47.1 MB
18. Learn Python Part 2/11. Iterables.mp4
45.3 MB
18. Learn Python Part 2/29. args and kwargs.mp4
45.1 MB
18. Learn Python Part 2/4. Truthy vs Falsey.mp4
44.9 MB
2. Machine Learning 101/3. Exercise Machine Learning Playground.mp4
44.7 MB
17. Learn Python/44. Dictionary Methods 2.mp4
44.4 MB
14. Neural Networks Deep Learning/7. Setting Up Our Data.mp4
44.3 MB
13. Data Engineering/2. What Is Data.mp4
44.3 MB
17. Learn Python/11. Math Functions.mp4
43.8 MB
11. Milestone Project 1 Supervised Learning (Classification)/18. Evaluating Our Model 2.mp4
43.6 MB
9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.mp4
42.6 MB
17. Learn Python/37. Common List Patterns.mp4
42.4 MB
14. Neural Networks Deep Learning/5. Google Colab Workspace.mp4
41.6 MB
17. Learn Python/7. Learning Python.mp4
40.4 MB
18. Learn Python Part 2/37. map().mp4
40.2 MB
18. Learn Python Part 2/23. Default Parameters and Keyword Arguments.mp4
40.0 MB
8. Matplotlib Plotting and Data Visualization/7. Subplots Option 2.mp4
39.9 MB
18. Learn Python Part 2/32. Scope Rules.mp4
39.5 MB
17. Learn Python/47. Sets.mp4
38.8 MB
3. Machine Learning and Data Science Framework/7. Features In Data.mp4
38.6 MB
14. Neural Networks Deep Learning/31. Preventing Overfitting.mp4
38.3 MB
18. Learn Python Part 2/33. global Keyword.mp4
38.3 MB
18. Learn Python Part 2/42. Set Comprehensions.mp4
37.1 MB
11. Milestone Project 1 Supervised Learning (Classification)/2. Project Overview.mp4
36.1 MB
18. Learn Python Part 2/10. For Loops.mp4
36.0 MB
18. Learn Python Part 2/9. is vs ==.mp4
35.2 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.mp4
34.5 MB
7. NumPy/15. Sorting Arrays.mp4
34.4 MB
17. Learn Python/40. Dictionaries.mp4
34.3 MB
13. Data Engineering/7. Types Of Databases.mp4
34.1 MB
8. Matplotlib Plotting and Data Visualization/2. Matplotlib Introduction.mp4
33.0 MB
9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 1 (Accuracy).mp4
32.9 MB
17. Learn Python/19. Strings.mp4
32.5 MB
18. Learn Python Part 2/26. Methods vs Functions.mp4
32.2 MB
5. Data Science Environment Setup/4. Conda Environments.mp4
32.0 MB
2. Machine Learning 101/4. How Did We Get Here.mp4
32.0 MB
3. Machine Learning and Data Science Framework/5. Types of Data.mp4
30.7 MB
17. Learn Python/29. DEVELOPER FUNDAMENTALS II.mp4
30.7 MB
17. Learn Python/8. Python Data Types.mp4
30.3 MB
9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 2 (MAE).mp4
29.9 MB
18. Learn Python Part 2/13. range().mp4
29.7 MB
18. Learn Python Part 2/7. Logical Operators.mp4
29.7 MB
2. Machine Learning 101/1. What Is Machine Learning.mp4
29.7 MB
18. Learn Python Part 2/15. While Loops.mp4
29.7 MB
14. Neural Networks Deep Learning/10. Optional TensorFlow 2.0 Default Issue.mp4
29.5 MB
18. Learn Python Part 2/3. Indentation In Python.mp4
29.4 MB
1. Introduction/4. Your First Day.mp4
29.3 MB
17. Learn Python/36. List Methods 3.mp4
29.0 MB
3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.mp4
28.9 MB
6. Pandas Data Analysis/3. Pandas Introduction.mp4
28.8 MB
17. Learn Python/35. List Methods 2.mp4
28.7 MB
3. Machine Learning and Data Science Framework/13. Tools We Will Use.mp4
28.7 MB
17. Learn Python/43. Dictionary Methods.mp4
28.5 MB
7. NumPy/2. NumPy Introduction.mp4
28.1 MB
17. Learn Python/41. DEVELOPER FUNDAMENTALS III.mp4
27.9 MB
7. NumPy/14. Comparison Operators.mp4
27.6 MB
17. Learn Python/6. Exercise How Does Python Work.mp4
27.2 MB
18. Learn Python Part 2/16. While Loops 2.mp4
27.2 MB
17. Learn Python/45. Tuples.mp4
26.9 MB
2. Machine Learning 101/8. What Is Machine Learning Round 2.mp4
26.7 MB
18. Learn Python Part 2/14. enumerate().mp4
26.0 MB
13. Data Engineering/5. What Is A Data Engineer 3.mp4
25.5 MB
13. Data Engineering/4. What Is A Data Engineer 2.mp4
25.4 MB
15. Storytelling + Communication How To Present Your Work/5. Weekend Project Principle.mp4
24.7 MB
18. Learn Python Part 2/38. filter().mp4
24.7 MB
3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.mp4
24.6 MB
3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.mp4
24.4 MB
17. Learn Python/22. Escape Sequences.mp4
24.3 MB
18. Learn Python Part 2/22. Parameters and Arguments.mp4
24.3 MB
2. Machine Learning 101/6. Types of Machine Learning.mp4
23.9 MB
18. Learn Python Part 2/17. break, continue, pass.mp4
23.3 MB
18. Learn Python Part 2/43. Exercise Comprehensions.mp4
23.0 MB
17. Learn Python/31. Lists.mp4
23.0 MB
17. Learn Python/15. Optional bin() and complex.mp4
23.0 MB
18. Learn Python Part 2/30. Exercise Functions.mp4
22.9 MB
3. Machine Learning and Data Science Framework/12. Experimentation.mp4
22.4 MB
18. Learn Python Part 2/39. zip().mp4
22.3 MB
14. Neural Networks Deep Learning/8. Setting Up Our Data 2.mp4
21.9 MB
17. Learn Python/25. Immutability.mp4
21.8 MB
17. Learn Python/42. Dictionary Keys.mp4
21.4 MB
18. Learn Python Part 2/1. Breaking The Flow.mp4
21.3 MB
18. Learn Python Part 2/20. Exercise Find Duplicates.mp4
21.2 MB
15. Storytelling + Communication How To Present Your Work/2. Communicating Your Work.mp4
21.2 MB
18. Learn Python Part 2/31. Scope.mp4
21.1 MB
18. Learn Python Part 2/5. Ternary Operator.mp4
20.7 MB
2. Machine Learning 101/2. AIMachine LearningData Science.mp4
20.6 MB
18. Learn Python Part 2/28. Clean Code.mp4
20.6 MB
2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.mp4
20.4 MB
18. Learn Python Part 2/6. Short Circuiting.mp4
20.3 MB
5. Data Science Environment Setup/2. Introducing Our Tools.mp4
20.2 MB
13. Data Engineering/13. Kafka and Stream Processing.mp4
20.2 MB
18. Learn Python Part 2/35. Why Do We Need Scope.mp4
20.1 MB
17. Learn Python/33. Matrix.mp4
20.1 MB
17. Learn Python/21. Type Conversion.mp4
19.9 MB
15. Storytelling + Communication How To Present Your Work/4. Communicating With Co-Workers.mp4
19.9 MB
15. Storytelling + Communication How To Present Your Work/3. Communicating With Managers.mp4
19.3 MB
18. Learn Python Part 2/34. nonlocal Keyword.mp4
19.1 MB
3. Machine Learning and Data Science Framework/6. Types of Evaluation.mp4
18.6 MB
18. Learn Python Part 2/27. Docstrings.mp4
18.2 MB
17. Learn Python/46. Tuples 2.mp4
17.8 MB
9. Scikit-learn Creating Machine Learning Models/42. Quick Tip Correlation Analysis.mp4
17.7 MB
17. Learn Python/27. Booleans.mp4
17.4 MB
9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.mp4
17.3 MB
18. Learn Python Part 2/12. Exercise Tricky Counter.mp4
17.2 MB
3. Machine Learning and Data Science Framework/10. Modelling - Tuning.mp4
16.8 MB
16. Career Advice + Extra Bits/7. JTS Start With Why.mp4
16.2 MB
17. Learn Python/18. Augmented Assignment Operator.mp4
16.1 MB
13. Data Engineering/3. What Is A Data Engineer.mp4
15.9 MB
13. Data Engineering/6. What Is A Data Engineer 4.mp4
15.7 MB
15. Storytelling + Communication How To Present Your Work/6. Communicating With Outside World.mp4
15.2 MB
17. Learn Python/13. Operator Precedence.mp4
15.1 MB
17. Learn Python/38. List Unpacking.mp4
14.5 MB
13. Data Engineering/1. Data Engineering Introduction.mp4
14.2 MB
3. Machine Learning and Data Science Framework/1. Section Overview.mp4
14.0 MB
7. NumPy/1. Section Overview.mp4
14.0 MB
5. Data Science Environment Setup/3. What is Conda.mp4
13.1 MB
9. Scikit-learn Creating Machine Learning Models/1. Section Overview.mp4
13.1 MB
8. Matplotlib Plotting and Data Visualization/8. Quick Tip Data Visualizations.mp4
12.9 MB
14. Neural Networks Deep Learning/1. Section Overview.mp4
12.8 MB
15. Storytelling + Communication How To Present Your Work/7. Storytelling.mp4
12.6 MB
3. Machine Learning and Data Science Framework/2. Introducing Our Framework.mp4
11.9 MB
16. Career Advice + Extra Bits/6. JTS Learn to Learn.mp4
11.7 MB
20. Where To Go From Here/2. Thank You.mp4
11.7 MB
9. Scikit-learn Creating Machine Learning Models/18. Quick Tip How ML Algorithms Work.mp4
11.6 MB
17. Learn Python/17. Expressions vs Statements.mp4
11.5 MB
15. Storytelling + Communication How To Present Your Work/1. Section Overview.mp4
11.5 MB
6. Pandas Data Analysis/1. Section Overview.mp4
11.4 MB
11. Milestone Project 1 Supervised Learning (Classification)/1. Section Overview.mp4
10.7 MB
13. Data Engineering/11. Hadoop, HDFS and MapReduce.mp4
10.6 MB
4. The 2 Paths/1. The 2 Paths.mp4
10.2 MB
12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.mp4
9.4 MB
8. Matplotlib Plotting and Data Visualization/1. Section Overview.mp4
9.0 MB
17. Learn Python/39. None.mp4
8.3 MB
17. Learn Python/20. String Concatenation.mp4
7.7 MB
7. NumPy/16.1 numpy-images.zip
7.6 MB
5. Data Science Environment Setup/1. Section Overview.mp4
6.3 MB
13. Data Engineering/12. Apache Spark and Apache Flink.mp4
6.0 MB
2. Machine Learning 101/9. Section Review.mp4
5.8 MB
8. Matplotlib Plotting and Data Visualization/4.2 matplotlib-anatomy-of-a-plot-with-code.png
670.5 kB
8. Matplotlib Plotting and Data Visualization/4.1 matplotlib-anatomy-of-a-plot.png
378.3 kB
6. Pandas Data Analysis/10.1 pandas-anatomy-of-a-dataframe.png
341.2 kB
6. Pandas Data Analysis/4.1 pandas-anatomy-of-a-dataframe.png
341.2 kB
5. Data Science Environment Setup/11.1 6-step-ml-framework.png
332.0 kB
5. Data Science Environment Setup/3.2 conda-cheatsheet.pdf
206.1 kB
9. Scikit-learn Creating Machine Learning Models/7. Typical scikit-learn Workflow.srt
32.5 kB
5. Data Science Environment Setup/8. Windows Environment Setup 2.srt
32.4 kB
9. Scikit-learn Creating Machine Learning Models/39. Tuning Hyperparameters.srt
31.3 kB
9. Scikit-learn Creating Machine Learning Models/45. Putting It All Together.srt
27.1 kB
9. Scikit-learn Creating Machine Learning Models/8. Optional Debugging Warnings In Jupyter.srt
26.1 kB
5. Data Science Environment Setup/5. Mac Environment Setup.srt
24.5 kB
9. Scikit-learn Creating Machine Learning Models/14. Getting Your Data Ready Handling Missing Values With Scikit-learn.srt
23.7 kB
14. Neural Networks Deep Learning/32. Training Your Deep Neural Network.srt
23.6 kB
9. Scikit-learn Creating Machine Learning Models/11. Getting Your Data Ready Convert Data To Numbers.srt
23.3 kB
5. Data Science Environment Setup/12. Jupyter Notebook Walkthrough 2.srt
23.0 kB
11. Milestone Project 1 Supervised Learning (Classification)/20. Finding The Most Important Features.srt
22.9 kB
11. Milestone Project 1 Supervised Learning (Classification)/8. Finding Patterns 2.srt
22.9 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/8. Turning Data Into Numbers.srt
22.9 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/7. Feature Engineering.srt
22.7 kB
9. Scikit-learn Creating Machine Learning Models/15. Choosing The Right Model For Your Data.srt
21.9 kB
16. Career Advice + Extra Bits/9. CWD Git + Github.srt
21.7 kB
9. Scikit-learn Creating Machine Learning Models/9.1 scikit-learn-data.zip
21.3 kB
5. Data Science Environment Setup/6. Mac Environment Setup 2.srt
21.2 kB
14. Neural Networks Deep Learning/41. Making Predictions On Test Images.srt
20.8 kB
14. Neural Networks Deep Learning/2. Deep Learning and Unstructured Data.srt
20.7 kB
14. Neural Networks Deep Learning/21. Turning Data Into Batches 2.srt
20.6 kB
16. Career Advice + Extra Bits/3. What If I Don't Have Enough Experience.srt
20.5 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/5. Exploring Our Data.srt
20.5 kB
7. NumPy/4. NumPy DataTypes and Attributes.srt
19.7 kB
14. Neural Networks Deep Learning/34. Make And Transform Predictions.srt
19.6 kB
14. Neural Networks Deep Learning/40. Training Model On Full Dataset.srt
19.6 kB
11. Milestone Project 1 Supervised Learning (Classification)/9. Finding Patterns 3.srt
19.3 kB
9. Scikit-learn Creating Machine Learning Models/41. Tuning Hyperparameters 3.srt
19.2 kB
14. Neural Networks Deep Learning/43. Making Predictions On Our Images.srt
19.0 kB
16. Career Advice + Extra Bits/10. CWD Git + Github 2.srt
18.7 kB
6. Pandas Data Analysis/9. Manipulating Data.srt
18.5 kB
9. Scikit-learn Creating Machine Learning Models/36. Evaluating A Model With Cross Validation and Scoring Parameter.srt
18.4 kB
6. Pandas Data Analysis/8. Selecting and Viewing Data with Pandas Part 2.srt
18.4 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/17. Preproccessing Our Data.srt
18.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/13. TuningImproving Our Model.srt
18.1 kB
14. Neural Networks Deep Learning/37. Visualizing And Evaluate Model Predictions 2.srt
18.1 kB
14. Neural Networks Deep Learning/35. Transform Predictions To Text.srt
18.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/19. Feature Importance.srt
17.7 kB
9. Scikit-learn Creating Machine Learning Models/25. Evaluating A Machine Learning Model 2 (Cross Validation).srt
17.7 kB
16. Career Advice + Extra Bits/11. Contributing To Open Source.srt
17.5 kB
9. Scikit-learn Creating Machine Learning Models/19. Choosing The Right Model For Your Data 3 (Classification).srt
17.5 kB
14. Neural Networks Deep Learning/36. Visualizing Model Predictions.srt
17.4 kB
9. Scikit-learn Creating Machine Learning Models/40. Tuning Hyperparameters 2.srt
17.4 kB
7. NumPy/13. Exercise Nut Butter Store Sales.srt
17.4 kB
9. Scikit-learn Creating Machine Learning Models/12. Getting Your Data Ready Handling Missing Values With Pandas.srt
17.4 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/9. Filling Missing Numerical Values.srt
17.3 kB
14. Neural Networks Deep Learning/39. Saving And Loading A Trained Model.srt
17.3 kB
6. Pandas Data Analysis/4. Series, Data Frames and CSVs.srt
17.2 kB
14. Neural Networks Deep Learning/9. Importing TensorFlow 2.srt
17.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/4. Step 1~4 Framework Setup.srt
17.0 kB
14. Neural Networks Deep Learning/42. Submitting Model to Kaggle.srt
17.0 kB
9. Scikit-learn Creating Machine Learning Models/37. Evaluating A Model With Scikit-learn Functions.srt
16.7 kB
7. NumPy/8. Manipulating Arrays.srt
16.6 kB
9. Scikit-learn Creating Machine Learning Models/46. Putting It All Together 2.srt
16.5 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/13. Custom Evaluation Function.srt
16.5 kB
14. Neural Networks Deep Learning/14. Loading Our Data Labels.srt
16.5 kB
8. Matplotlib Plotting and Data Visualization/3. Importing And Using Matplotlib.srt
16.4 kB
17. Learn Python/16. Variables.srt
16.4 kB
14. Neural Networks Deep Learning/25. Building A Deep Learning Model.srt
16.3 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/3. Project Environment Setup.srt
16.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/14. Tuning Hyperparameters.srt
16.0 kB
18. Learn Python Part 2/2. Conditional Logic.srt
16.0 kB
14. Neural Networks Deep Learning/22. Visualizing Our Data.srt
16.0 kB
7. NumPy/12. Dot Product vs Element Wise.srt
15.7 kB
5. Data Science Environment Setup/11. Jupyter Notebook Walkthrough.srt
15.5 kB
14. Neural Networks Deep Learning/15. Preparing The Images.srt
15.5 kB
11. Milestone Project 1 Supervised Learning (Classification)/17. Evaluating Our Model.srt
15.5 kB
9. Scikit-learn Creating Machine Learning Models/29. Evaluating A Classification Model 4 (Confusion Matrix).srt
15.5 kB
11. Milestone Project 1 Supervised Learning (Classification)/15. Tuning Hyperparameters 2.srt
15.5 kB
18. Learn Python Part 2/24. return.srt
15.3 kB
8. Matplotlib Plotting and Data Visualization/16. Plotting from Pandas DataFrames 7.srt
15.3 kB
9. Scikit-learn Creating Machine Learning Models/38. Improving A Machine Learning Model.srt
15.2 kB
8. Matplotlib Plotting and Data Visualization/5. Scatter Plot And Bar Plot.srt
15.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/14. Reducing Data.srt
15.0 kB
6. Pandas Data Analysis/7. Selecting and Viewing Data with Pandas.srt
14.9 kB
9. Scikit-learn Creating Machine Learning Models/31. Evaluating A Classification Model 6 (Classification Report).srt
14.9 kB
11. Milestone Project 1 Supervised Learning (Classification)/3. Project Environment Setup.srt
14.7 kB
8. Matplotlib Plotting and Data Visualization/4. Anatomy Of A Matplotlib Figure.srt
14.5 kB
3. Machine Learning and Data Science Framework/4. Types of Machine Learning Problems.srt
14.3 kB
8. Matplotlib Plotting and Data Visualization/17. Customizing Your Plots.srt
14.3 kB
6. Pandas Data Analysis/10. Manipulating Data 2.srt
14.2 kB
14. Neural Networks Deep Learning/38. Visualizing And Evaluate Model Predictions 3.srt
14.1 kB
11. Milestone Project 1 Supervised Learning (Classification)/21. Reviewing The Project.srt
14.1 kB
14. Neural Networks Deep Learning/16. Turning Data Labels Into Numbers.srt
14.1 kB
6. Pandas Data Analysis/11. Manipulating Data 3.srt
14.0 kB
8. Matplotlib Plotting and Data Visualization/11. Plotting From Pandas DataFrames 2.srt
14.0 kB
6. Pandas Data Analysis/6. Describing Data with Pandas.srt
13.9 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/12. Splitting Data.srt
13.8 kB
11. Milestone Project 1 Supervised Learning (Classification)/7. Finding Patterns.srt
13.7 kB
8. Matplotlib Plotting and Data Visualization/18. Customizing Your Plots 2.srt
13.6 kB
3. Machine Learning and Data Science Framework/11. Modelling - Comparison.srt
13.4 kB
11. Milestone Project 1 Supervised Learning (Classification)/11. Choosing The Right Models.srt
13.3 kB
14. Neural Networks Deep Learning/18. Preprocess Images.srt
13.2 kB
14. Neural Networks Deep Learning/19. Preprocess Images 2.srt
13.2 kB
7. NumPy/7. Viewing Arrays and Matrices.srt
13.2 kB
9. Scikit-learn Creating Machine Learning Models/24. Evaluating A Machine Learning Model (Score).srt
13.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/5. Getting Our Tools Ready.srt
13.1 kB
18. Learn Python Part 2/45. Modules in Python.srt
13.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/15. RandomizedSearchCV.srt
13.0 kB
14. Neural Networks Deep Learning/26. Building A Deep Learning Model 2.srt
12.8 kB
18. Learn Python Part 2/48. Packages in Python.srt
12.8 kB
8. Matplotlib Plotting and Data Visualization/6. Histograms And Subplots.srt
12.7 kB
7. NumPy/5. Creating NumPy Arrays.srt
12.7 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/4. Step 1~4 Framework Setup.srt
12.7 kB
9. Scikit-learn Creating Machine Learning Models/27. Evaluating A Classification Model 2 (ROC Curve).srt
12.6 kB
14. Neural Networks Deep Learning/11. Using A GPU.srt
12.4 kB
13. Data Engineering/9. Optional OLTP Databases.srt
12.4 kB
9. Scikit-learn Creating Machine Learning Models/21. Making Predictions With Our Model.srt
12.4 kB
9. Scikit-learn Creating Machine Learning Models/9. Getting Your Data Ready Splitting Your Data.srt
12.4 kB
14. Neural Networks Deep Learning/28. Building A Deep Learning Model 4.srt
12.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/10. Preparing Our Data For Machine Learning.srt
12.3 kB
9. Scikit-learn Creating Machine Learning Models/32. Evaluating A Regression Model 1 (R2 Score).srt
12.3 kB
9. Scikit-learn Creating Machine Learning Models/16. Choosing The Right Model For Your Data 2 (Regression).srt
12.3 kB
8. Matplotlib Plotting and Data Visualization/14. Plotting from Pandas DataFrames 5.srt
11.9 kB
14. Neural Networks Deep Learning/20. Turning Data Into Batches.srt
11.9 kB
9. Scikit-learn Creating Machine Learning Models/22. predict() vs predict_proba().srt
11.8 kB
11. Milestone Project 1 Supervised Learning (Classification)/19. Evaluating Our Model 3.srt
11.8 kB
7. NumPy/9. Manipulating Arrays 2.srt
11.8 kB
5. Data Science Environment Setup/13. Jupyter Notebook Walkthrough 3.srt
11.8 kB
8. Matplotlib Plotting and Data Visualization/12. Plotting from Pandas DataFrames 3.srt
11.7 kB
11. Milestone Project 1 Supervised Learning (Classification)/6. Exploring Our Data.srt
11.7 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/18. Making Predictions.srt
11.6 kB
14. Neural Networks Deep Learning/17. Creating Our Own Validation Set.srt
11.6 kB
14. Neural Networks Deep Learning/27. Building A Deep Learning Model 3.srt
11.5 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/10. Filling Missing Categorical Values.srt
11.5 kB
9. Scikit-learn Creating Machine Learning Models/30. Evaluating A Classification Model 5 (Confusion Matrix).srt
11.5 kB
17. Learn Python/10. Numbers.srt
11.4 kB
8. Matplotlib Plotting and Data Visualization/15. Plotting from Pandas DataFrames 6.srt
11.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/6.1 heart-disease.csv
11.3 kB
5. Data Science Environment Setup/11.3 heart-disease.csv
11.3 kB
8. Matplotlib Plotting and Data Visualization/13.1 heart-disease.csv
11.3 kB
6. Pandas Data Analysis/13. How To Download The Course Assignments.srt
11.3 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/16. Improving Hyperparameters.srt
11.3 kB
17. Learn Python/34. List Methods.srt
11.0 kB
9. Scikit-learn Creating Machine Learning Models/2. Scikit-learn Introduction.srt
10.9 kB
18. Learn Python Part 2/47. Optional PyCharm.srt
10.8 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/11. Fitting A Machine Learning Model.srt
10.7 kB
7. NumPy/16. Turn Images Into NumPy Arrays.srt
10.7 kB
14. Neural Networks Deep Learning/30. Evaluating Our Model.srt
10.7 kB
18. Learn Python Part 2/18. Our First GUI.srt
10.6 kB
17. Learn Python/26. Built-In Functions + Methods.srt
10.5 kB
16. Career Advice + Extra Bits/12. Contributing To Open Source 2.srt
10.4 kB
9. Scikit-learn Creating Machine Learning Models/6. Scikit-learn Cheatsheet.srt
10.3 kB
18. Learn Python Part 2/36. Pure Functions.srt
10.3 kB
9. Scikit-learn Creating Machine Learning Models/28. Evaluating A Classification Model 3 (ROC Curve).srt
10.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/2. Project Overview.srt
10.3 kB
11. Milestone Project 1 Supervised Learning (Classification)/16. Tuning Hyperparameters 3.srt
10.2 kB
9. Scikit-learn Creating Machine Learning Models/43. Saving And Loading A Model.srt
10.1 kB
7. NumPy/6. NumPy Random Seed.srt
10.0 kB
14. Neural Networks Deep Learning/4. Setting Up Google Colab.srt
9.9 kB
11. Milestone Project 1 Supervised Learning (Classification)/12. Experimenting With Machine Learning Models.srt
9.9 kB
14. Neural Networks Deep Learning/33. Evaluating Performance With TensorBoard.srt
9.8 kB
7. NumPy/11. Reshape and Transpose.srt
9.8 kB
8. Matplotlib Plotting and Data Visualization/13. Plotting from Pandas DataFrames 4.srt
9.6 kB
18. Learn Python Part 2/41. List Comprehensions.srt
9.6 kB
7. NumPy/10. Standard Deviation and Variance.srt
9.6 kB
9. Scikit-learn Creating Machine Learning Models/20. Fitting A Model To The Data.srt
9.6 kB
17. Learn Python/48. Sets 2.srt
9.5 kB
9. Scikit-learn Creating Machine Learning Models/34. Evaluating A Regression Model 3 (MSE).srt
9.5 kB
17. Learn Python/24. String Indexes.srt
9.4 kB
18. Learn Python Part 2/21. Functions.srt
9.4 kB
1. Introduction/1. Course Outline.srt
9.4 kB
9. Scikit-learn Creating Machine Learning Models/23. Making Predictions With Our Model (Regression).srt
9.3 kB
17. Learn Python/4. Our First Python Program.srt
9.2 kB
8. Matplotlib Plotting and Data Visualization/9. Plotting From Pandas DataFrames.srt
9.2 kB
15. Storytelling + Communication How To Present Your Work/5. Weekend Project Principle.srt
9.2 kB
9. Scikit-learn Creating Machine Learning Models/44. Saving And Loading A Model 2.srt
9.2 kB
17. Learn Python/23. Formatted Strings.srt
9.0 kB
7. NumPy/15. Sorting Arrays.srt
9.0 kB
2. Machine Learning 101/1. What Is Machine Learning.srt
8.9 kB
14. Neural Networks Deep Learning/6. Uploading Project Data.srt
8.8 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/6. Exploring Our Data 2.srt
8.8 kB
17. Learn Python/28. Exercise Type Conversion.srt
8.8 kB
17. Learn Python/32. List Slicing.srt
8.7 kB
18. Learn Python Part 2/32. Scope Rules.srt
8.7 kB
17. Learn Python/47. Sets.srt
8.6 kB
18. Learn Python Part 2/8. Exercise Logical Operators.srt
8.6 kB
18. Learn Python Part 2/40. reduce().srt
8.6 kB
13. Data Engineering/7. Types Of Databases.srt
8.6 kB
17. Learn Python/2. Python Interpreter.srt
8.5 kB
17. Learn Python/5. Python 2 vs Python 3.srt
8.4 kB
18. Learn Python Part 2/9. is vs ==.srt
8.3 kB
18. Learn Python Part 2/7. Logical Operators.srt
8.3 kB
2. Machine Learning 101/3. Exercise Machine Learning Playground.srt
8.3 kB
18. Learn Python Part 2/29. args and kwargs.srt
8.3 kB
8. Matplotlib Plotting and Data Visualization/2. Matplotlib Introduction.srt
8.2 kB
17. Learn Python/30. Exercise Password Checker.srt
8.1 kB
18. Learn Python Part 2/19. DEVELOPER FUNDAMENTALS IV.srt
8.0 kB
14. Neural Networks Deep Learning/23. Preparing Our Inputs and Outputs.srt
8.0 kB
14. Neural Networks Deep Learning/13. Optional Reloading Colab Notebook.srt
8.0 kB
3. Machine Learning and Data Science Framework/8. Modelling - Splitting Data.srt
7.9 kB
5. Data Science Environment Setup/7. Windows Environment Setup.srt
7.8 kB
13. Data Engineering/2. What Is Data.srt
7.8 kB
18. Learn Python Part 2/10. For Loops.srt
7.7 kB
7. NumPy/2. NumPy Introduction.srt
7.7 kB
18. Learn Python Part 2/49. Different Ways To Import.srt
7.7 kB
11. Milestone Project 1 Supervised Learning (Classification)/18. Evaluating Our Model 2.srt
7.6 kB
18. Learn Python Part 2/15. While Loops.srt
7.5 kB
17. Learn Python/44. Dictionary Methods 2.srt
7.3 kB
9. Scikit-learn Creating Machine Learning Models/35. Machine Learning Model Evaluation.html
7.3 kB
17. Learn Python/40. Dictionaries.srt
7.3 kB
2. Machine Learning 101/4. How Did We Get Here.srt
7.2 kB
17. Learn Python/1. What Is A Programming Language.srt
7.2 kB
18. Learn Python Part 2/11. Iterables.srt
7.0 kB
3. Machine Learning and Data Science Framework/7. Features In Data.srt
6.9 kB
18. Learn Python Part 2/33. global Keyword.srt
6.8 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/2. Project Overview.srt
6.8 kB
3. Machine Learning and Data Science Framework/3. 6 Step Machine Learning Framework.srt
6.8 kB
18. Learn Python Part 2/42. Set Comprehensions.srt
6.7 kB
3. Machine Learning and Data Science Framework/5. Types of Data.srt
6.7 kB
17. Learn Python/3. How To Run Python Code.srt
6.6 kB
9. Scikit-learn Creating Machine Learning Models/10. Quick Tip Clean, Transform, Reduce.srt
6.6 kB
18. Learn Python Part 2/16. While Loops 2.srt
6.6 kB
8. Matplotlib Plotting and Data Visualization/7. Subplots Option 2.srt
6.5 kB
14. Neural Networks Deep Learning/7. Setting Up Our Data.srt
6.5 kB
2. Machine Learning 101/2. AIMachine LearningData Science.srt
6.5 kB
9. Scikit-learn Creating Machine Learning Models/4. Refresher What Is Machine Learning.srt
6.5 kB
13. Data Engineering/4. What Is A Data Engineer 2.srt
6.5 kB
14. Neural Networks Deep Learning/5. Google Colab Workspace.srt
6.5 kB
17. Learn Python/19. Strings.srt
6.4 kB
18. Learn Python Part 2/37. map().srt
6.4 kB
3. Machine Learning and Data Science Framework/9. Modelling - Picking the Model.srt
6.4 kB
5. Data Science Environment Setup/4. Conda Environments.srt
6.3 kB
2. Machine Learning 101/8. What Is Machine Learning Round 2.srt
6.2 kB
3. Machine Learning and Data Science Framework/13. Tools We Will Use.srt
6.1 kB
14. Neural Networks Deep Learning/12. Optional GPU and Google Colab.srt
6.1 kB
18. Learn Python Part 2/4. Truthy vs Falsey.srt
6.1 kB
18. Learn Python Part 2/23. Default Parameters and Keyword Arguments.srt
6.1 kB
14. Neural Networks Deep Learning/29. Summarizing Our Model.srt
6.1 kB
9. Scikit-learn Creating Machine Learning Models/26. Evaluating A Classification Model 1 (Accuracy).srt
6.0 kB
18. Learn Python Part 2/13. range().srt
6.0 kB
8. Matplotlib Plotting and Data Visualization/19. Saving And Sharing Your Plots.srt
6.0 kB
17. Learn Python/37. Common List Patterns.srt
6.0 kB
9. Scikit-learn Creating Machine Learning Models/33. Evaluating A Regression Model 2 (MAE).srt
5.8 kB
17. Learn Python/45. Tuples.srt
5.8 kB
2. Machine Learning 101/5. Exercise YouTube Recommendation Engine.srt
5.8 kB
17. Learn Python/31. Lists.srt
5.7 kB
14. Neural Networks Deep Learning/31. Preventing Overfitting.srt
5.7 kB
15. Storytelling + Communication How To Present Your Work/4. Communicating With Co-Workers.srt
5.7 kB
17. Learn Python/11. Math Functions.srt
5.6 kB
13. Data Engineering/5. What Is A Data Engineer 3.srt
5.5 kB
18. Learn Python Part 2/28. Clean Code.srt
5.5 kB
17. Learn Python/29. DEVELOPER FUNDAMENTALS II.srt
5.4 kB
18. Learn Python Part 2/3. Indentation In Python.srt
5.4 kB
2. Machine Learning 101/6. Types of Machine Learning.srt
5.4 kB
1. Introduction/4. Your First Day.srt
5.4 kB
17. Learn Python/43. Dictionary Methods.srt
5.4 kB
7. NumPy/14. Comparison Operators.srt
5.4 kB
18. Learn Python Part 2/17. break, continue, pass.srt
5.4 kB
18. Learn Python Part 2/26. Methods vs Functions.srt
5.4 kB
17. Learn Python/12. DEVELOPER FUNDAMENTALS I.srt
5.3 kB
17. Learn Python/8. Python Data Types.srt
5.3 kB
18. Learn Python Part 2/38. filter().srt
5.2 kB
13. Data Engineering/13. Kafka and Stream Processing.srt
5.2 kB
17. Learn Python/36. List Methods 3.srt
5.1 kB
17. Learn Python/22. Escape Sequences.srt
5.1 kB
3. Machine Learning and Data Science Framework/12. Experimentation.srt
5.1 kB
18. Learn Python Part 2/43. Exercise Comprehensions.srt
5.1 kB
13. Data Engineering/3. What Is A Data Engineer.srt
5.0 kB
18. Learn Python Part 2/22. Parameters and Arguments.srt
5.0 kB
3. Machine Learning and Data Science Framework/10. Modelling - Tuning.srt
5.0 kB
15. Storytelling + Communication How To Present Your Work/2. Communicating Your Work.srt
5.0 kB
18. Learn Python Part 2/5. Ternary Operator.srt
4.9 kB
17. Learn Python/15. Optional bin() and complex.srt
4.9 kB
18. Learn Python Part 2/35. Why Do We Need Scope.srt
4.9 kB
4. The 2 Paths/1. The 2 Paths.srt
4.8 kB
13. Data Engineering/11. Hadoop, HDFS and MapReduce.srt
4.8 kB
18. Learn Python Part 2/30. Exercise Functions.srt
4.8 kB
3. Machine Learning and Data Science Framework/1. Section Overview.srt
4.8 kB
18. Learn Python Part 2/14. enumerate().srt
4.7 kB
15. Storytelling + Communication How To Present Your Work/3. Communicating With Managers.srt
4.6 kB
15. Storytelling + Communication How To Present Your Work/6. Communicating With Outside World.srt
4.6 kB
17. Learn Python/35. List Methods 2.srt
4.6 kB
14. Neural Networks Deep Learning/10. Optional TensorFlow 2.0 Default Issue.srt
4.6 kB
18. Learn Python Part 2/6. Short Circuiting.srt
4.6 kB
18. Learn Python Part 2/20. Exercise Find Duplicates.srt
4.5 kB
5. Data Science Environment Setup/2. Introducing Our Tools.srt
4.4 kB
3. Machine Learning and Data Science Framework/6. Types of Evaluation.srt
4.4 kB
18. Learn Python Part 2/27. Docstrings.srt
4.4 kB
13. Data Engineering/1. Data Engineering Introduction.srt
4.4 kB
17. Learn Python/42. Dictionary Keys.srt
4.3 kB
17. Learn Python/33. Matrix.srt
4.2 kB
9. Scikit-learn Creating Machine Learning Models/1. Section Overview.srt
4.2 kB
15. Storytelling + Communication How To Present Your Work/7. Storytelling.srt
4.2 kB
18. Learn Python Part 2/34. nonlocal Keyword.srt
4.2 kB
17. Learn Python/27. Booleans.srt
4.0 kB
14. Neural Networks Deep Learning/44. Finishing Dog Vision Where to next.html
4.0 kB
13. Data Engineering/6. What Is A Data Engineer 4.srt
4.0 kB
18. Learn Python Part 2/31. Scope.srt
3.9 kB
6. Pandas Data Analysis/1. Section Overview.srt
3.8 kB
3. Machine Learning and Data Science Framework/2. Introducing Our Framework.srt
3.8 kB
20. Where To Go From Here/2. Thank You.srt
3.7 kB
17. Learn Python/41. DEVELOPER FUNDAMENTALS III.srt
3.7 kB
18. Learn Python Part 2/12. Exercise Tricky Counter.srt
3.7 kB
17. Learn Python/13. Operator Precedence.srt
3.6 kB
17. Learn Python/25. Immutability.srt
3.6 kB
5. Data Science Environment Setup/3. What is Conda.srt
3.5 kB
15. Storytelling + Communication How To Present Your Work/1. Section Overview.srt
3.4 kB
18. Learn Python Part 2/39. zip().srt
3.3 kB
15. Storytelling + Communication How To Present Your Work/8. Communicating and sharing your work Further reading.html
3.2 kB
11. Milestone Project 1 Supervised Learning (Classification)/1. Section Overview.srt
3.2 kB
7. NumPy/1. Section Overview.srt
3.2 kB
9. Scikit-learn Creating Machine Learning Models/42. Quick Tip Correlation Analysis.srt
3.2 kB
17. Learn Python/21. Type Conversion.srt
3.2 kB
17. Learn Python/46. Tuples 2.srt
3.1 kB
18. Learn Python Part 2/1. Breaking The Flow.srt
3.1 kB
16. Career Advice + Extra Bits/7. JTS Start With Why.srt
3.0 kB
17. Learn Python/18. Augmented Assignment Operator.srt
3.0 kB
17. Learn Python/38. List Unpacking.srt
3.0 kB
17. Learn Python/6. Exercise How Does Python Work.srt
2.9 kB
14. Neural Networks Deep Learning/1. Section Overview.srt
2.8 kB
14. Neural Networks Deep Learning/24. Optional How machines learn and what's going on behind the scenes.html
2.8 kB
8. Matplotlib Plotting and Data Visualization/1. Section Overview.srt
2.8 kB
17. Learn Python/7. Learning Python.srt
2.6 kB
1. Introduction/3. Exercise Meet The Community.html
2.6 kB
16. Career Advice + Extra Bits/6. JTS Learn to Learn.srt
2.6 kB
5. Data Science Environment Setup/10. Sharing your Conda Environment.html
2.5 kB
2. Machine Learning 101/9. Section Review.srt
2.4 kB
8. Matplotlib Plotting and Data Visualization/8. Quick Tip Data Visualizations.srt
2.4 kB
13. Data Engineering/12. Apache Spark and Apache Flink.srt
2.4 kB
17. Learn Python/39. None.srt
2.2 kB
14. Neural Networks Deep Learning/8. Setting Up Our Data 2.srt
2.2 kB
1. Introduction/2. Join Our Online Classroom!.html
2.2 kB
7. NumPy/17. Assignment NumPy Practice.html
2.2 kB
5. Data Science Environment Setup/1. Section Overview.srt
2.2 kB
9. Scikit-learn Creating Machine Learning Models/47. Scikit-Learn Practice.html
2.1 kB
8. Matplotlib Plotting and Data Visualization/20. Assignment Matplotlib Practice.html
2.1 kB
6. Pandas Data Analysis/12. Assignment Pandas Practice.html
2.1 kB
9. Scikit-learn Creating Machine Learning Models/13. Note Correction in the upcoming video.html
2.1 kB
9. Scikit-learn Creating Machine Learning Models/18. Quick Tip How ML Algorithms Work.srt
2.0 kB
12. Milestone Project 2 Supervised Learning (Time Series Data)/1. Section Overview.srt
1.9 kB
20. Where To Go From Here/1. Become An Alumni.html
1.8 kB
17. Learn Python/17. Expressions vs Statements.srt
1.8 kB
21. Extras/1. Bonus Special Thank You Gift!.html
1.6 kB
16. Career Advice + Extra Bits/14. Exercise Contribute To Open Source.html
1.5 kB
17. Learn Python/20. String Concatenation.srt
1.5 kB
7. NumPy/3. Quick Note Correction In Next Video.html
1.3 kB
18. Learn Python Part 2/44. Python Exam Testing Your Understanding.html
1.1 kB
6. Pandas Data Analysis/5. Data from URLs.html
1.1 kB
5. Data Science Environment Setup/9. Linux Environment Setup.html
1.1 kB
7. NumPy/18. Optional Extra NumPy resources.html
1.0 kB
Verify Files.txt
1.0 kB
9. Scikit-learn Creating Machine Learning Models/5. Quick Note Upcoming Videos.html
1.0 kB
3. Machine Learning and Data Science Framework/14. Optional Elements of AI.html
975 Bytes
6. Pandas Data Analysis/2. Downloading Workbooks and Assignments.html
967 Bytes
18. Learn Python Part 2/50. Next Steps.html
959 Bytes
16. Career Advice + Extra Bits/13. Coding Challenges.html
948 Bytes
10. Supervised Learning Classification + Regression/1. Milestone Projects!.html
738 Bytes
4. The 2 Paths/2. Python + Machine Learning Monthly.html
734 Bytes
19. Bonus Learn Advanced Statistics and Mathematics for FREE!/1. Statistics and Mathematics.html
710 Bytes
16. Career Advice + Extra Bits/1. Endorsements On LinkedIn.html
688 Bytes
17. Learn Python/14. Exercise Operator Precedence.html
683 Bytes
8. Matplotlib Plotting and Data Visualization/10. Quick Note Regular Expressions.html
632 Bytes
16. Career Advice + Extra Bits/2. Quick Note Upcoming Video.html
587 Bytes
14. Neural Networks Deep Learning/3. Setting Up With Google.html
568 Bytes
16. Career Advice + Extra Bits/5. Quick Note Upcoming Videos.html
565 Bytes
13. Data Engineering/8. Quick Note Upcoming Video.html
481 Bytes
18. Learn Python Part 2/46. Quick Note Upcoming Videos.html
448 Bytes
13. Data Engineering/10. Optional Learn SQL.html
410 Bytes
18. Learn Python Part 2/25. Exercise Tesla.html
402 Bytes
9. Scikit-learn Creating Machine Learning Models/3. Quick Note Upcoming Video.html
390 Bytes
6. Pandas Data Analysis/7.1 car-sales.csv
369 Bytes
16. Career Advice + Extra Bits/8. Quick Note Upcoming Videos.html
352 Bytes
16. Career Advice + Extra Bits/4. Learning Guideline.html
310 Bytes
6. Pandas Data Analysis/9.2 car-sales-missing-data.csv
287 Bytes
17. Learn Python/9. How To Succeed.html
280 Bytes
9. Scikit-learn Creating Machine Learning Models/17. Quick Note Decision Trees.html
221 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/19.1 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html
214 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.2 End-to-end Bluebook Bulldozer Regression Notebook (same as in videos).html
214 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/19.2 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html
208 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.3 End-to-end Bluebook Bulldozer Regression Notebook (with annotations).html
208 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/2.3 End-to-end Heart Disease Classification Notebook (same as in videos).html
207 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/21.1 End-to-end Heart Disease Classification Notebook (same as in videos).html
207 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/2.2 End-to-end Heart Disease Classification Notebook (with annotations).html
201 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/21.2 End-to-end Heart Disease Classification Notebook (with annotations).html
201 Bytes
9. Scikit-learn Creating Machine Learning Models/2.1 Introduction to Scikit-Learn Jupyter Notebook (from the upcoming videos).html
197 Bytes
9. Scikit-learn Creating Machine Learning Models/46.1 Introduction to Scikit-Learn Jupyter Notebook (from the videos).html
197 Bytes
8. Matplotlib Plotting and Data Visualization/19.1 Introduction to Matplotlib Notebook (from the videos).html
195 Bytes
8. Matplotlib Plotting and Data Visualization/2.1 Introduction to Matplotlib Jupyter Notebook (from the upcoming videos).html
195 Bytes
9. Scikit-learn Creating Machine Learning Models/6.1 Scikit-Learn Reference Notebook.html
194 Bytes
9. Scikit-learn Creating Machine Learning Models/7.1 Example Scikit-Learn Workflow Notebook.html
192 Bytes
14. Neural Networks Deep Learning/43.1 End-to-end Dog Vision Notebook (from the videos).html
191 Bytes
6. Pandas Data Analysis/11.1 Introduction to Pandas Jupyter Notebook (from the videos).html
191 Bytes
6. Pandas Data Analysis/3.4 Introduction to Pandas Jupyter Notebook (from the upcoming videos).html
191 Bytes
9. Scikit-learn Creating Machine Learning Models/2.3 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html
191 Bytes
9. Scikit-learn Creating Machine Learning Models/46.2 Introduction to Scikit-Learn Jupyter Notebook (with annotations).html
191 Bytes
7. NumPy/16.2 Introduction to NumPy Jupyter Notebook (from the videos).html
190 Bytes
7. NumPy/2.2 Introduction to NumPy Jupyter Notebook (from the upcoming videos).html
190 Bytes
14. Neural Networks Deep Learning/43.2 End-to-end Dog Vision Notebook (with annotations).html
185 Bytes
6. Pandas Data Analysis/11.2 Introduction to Pandas Jupyter Notebook (with annotations).html
185 Bytes
6. Pandas Data Analysis/3.2 Introduction to Pandas Jupyter Notebook (with annotations).html
185 Bytes
7. NumPy/16.3 Introduction to NumPy Jupyter Notebook (with annotations).html
184 Bytes
7. NumPy/2.1 Introduction to NumPy Jupyter Notebook (with annotations).html
184 Bytes
14. Neural Networks Deep Learning/4.3 End-to-end Dog Vision Notebook (the project we'll be working through).html
182 Bytes
14. Neural Networks Deep Learning/42.1 Dog Vision Predictions with MobileNetV2 Ready for Kaggle Submission.html
180 Bytes
14. Neural Networks Deep Learning/27.2 Step by step breakdown of a convolutional neural network (what MobileNetV2 is made of).html
172 Bytes
5. Data Science Environment Setup/10.1 Conda documentation on sharing an environment.html
172 Bytes
14. Neural Networks Deep Learning/41.1 Dog Vision Prediction Probabilities Array.html
170 Bytes
18. Learn Python Part 2/4.1 Truthy vs Falsey Stackoverflow.html
170 Bytes
14. Neural Networks Deep Learning/28.1 [Article] How to choose loss & activation functions when building a deep learning model.html
169 Bytes
5. Data Science Environment Setup/3.1 Getting your computer ready for machine learning How.html
167 Bytes
14. Neural Networks Deep Learning/27.3 MobileNetV2 (the model we're using) architecture explanation by Sik-Ho Tsang.html
163 Bytes
17. Learn Python/5.1 Python 2 vs Python 3.html
161 Bytes
2. Machine Learning 101/7. Are You Getting It Yet.html
160 Bytes
11. Milestone Project 1 Supervised Learning (Classification)/2.1 Structured Data Projects on GitHub.html
155 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.4 Structured Data Projects on GitHub.html
155 Bytes
3. Machine Learning and Data Science Framework/3.1 A 6 Step Field Guide for Machine Learning Modelling (blog post).html
147 Bytes
6. Pandas Data Analysis/9.1 Jake VanderPlas's Data Manipulation with Pandas.html
146 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/9.1 Pandas Categorical Datatype Documentation.html
143 Bytes
15. Storytelling + Communication How To Present Your Work/2.1 How to Think About Communicating and Sharing Your Work (blog post).html
142 Bytes
5. Data Science Environment Setup/3.3 Getting started with Conda (documentation).html
139 Bytes
14. Neural Networks Deep Learning/31.1 Early Stopping Callback (a way to stop your model from training when it stops improving) Documentation.html
136 Bytes
14. Neural Networks Deep Learning/30.1 TensorBoard Callback Documentation.html
134 Bytes
9. Scikit-learn Creating Machine Learning Models/15.1 Scikit-Learn machine learning map (how to choose the right machine learning model).html
133 Bytes
14. Neural Networks Deep Learning/25.2 MobileNetV2 (the model we're using) on TensorFlow Hub.html
132 Bytes
6. Pandas Data Analysis/3.3 10-minutes to pandas (from the pandas documentation).html
132 Bytes
14. Neural Networks Deep Learning/10.1 Loading TensorFlow 2.0 into a Colab Notebook (if it isn't the default).html
129 Bytes
14. Neural Networks Deep Learning/14.1 Documentation on how many images Google recommends for image problems.html
129 Bytes
14. Neural Networks Deep Learning/35.1 TensorFlow documentation for the unbatch() function.html
127 Bytes
13. Data Engineering/7.2 OLTP vs OLAP.html
126 Bytes
14. Neural Networks Deep Learning/4.1 Kaggle Dog Breed Identification Competition (the basis of our upcoming project).html
119 Bytes
17. Learn Python/43.1 Dictionary Methods.html
119 Bytes
7. NumPy/12.1 Matrix Multiplication Explained.html
119 Bytes
12. Milestone Project 2 Supervised Learning (Time Series Data)/2.1 Kaggle Bluebook for Bulldozers Competition.html
118 Bytes
14. Neural Networks Deep Learning/21.1 Yann LeCun's (OG of deep learning) Tweet on Batch Sizes.html
118 Bytes
13. Data Engineering/7.1 A Primer on ACID Transactions.html
117 Bytes
17. Learn Python/16.1 Python Keywords.html
117 Bytes
17. Learn Python/35.1 Python Keywords.html
117 Bytes
5. Data Science Environment Setup/11.4 Dataquest Jupyter Notebook for Beginners Tutorial.html
117 Bytes
14. Neural Networks Deep Learning/12.2 Introduction to Google Colab example notebook.html
116 Bytes
14. Neural Networks Deep Learning/4.4 Introduction to Google Colab example notebook.html
116 Bytes
17. Learn Python/18.1 Exercise Repl.html
116 Bytes
7. NumPy/10.1 Standard deviation and variance explained.html
116 Bytes
7. NumPy/8.1 Standard deviation and variance explained.html
116 Bytes
7. NumPy/9.1 Standard deviation and variance explained.html
116 Bytes
14. Neural Networks Deep Learning/6.1 Kaggle Dog Breed Identification Competition Data.html
115 Bytes
17. Learn Python/26.2 String Methods.html
115 Bytes
14. Neural Networks Deep Learning/11.1 Google Colab example GPU usage.html
114 Bytes
14. Neural Networks Deep Learning/12.1 Google Colab Example of GPU speed up versus CPU.html
114 Bytes
14. Neural Networks Deep Learning/18.2 Documentation for loading images in TensorFlow.html
114 Bytes
17. Learn Python/46.1 Tuple Methods.html
114 Bytes
14. Neural Networks Deep Learning/4.5 Google Colab IO example (how to get data in and out of your Colab notebook).html
113 Bytes
14. Neural Networks Deep Learning/6.2 Google Colab IO example (how to get data in and out of your Colab notebook).html
113 Bytes
17. Learn Python/34.1 List Methods.html
113 Bytes
17. Learn Python/48.1 Sets Methods.html
112 Bytes
17. Learn Python/15.1 Base Numbers.html
111 Bytes
5. Data Science Environment Setup/11.2 Jupyter Notebook documentation.html
111 Bytes
14. Neural Networks Deep Learning/5.2 Google Colab FAQ (things you should know about Google Colab).html
110 Bytes
17. Learn Python/26.1 Built in Functions.html
109 Bytes
14. Neural Networks Deep Learning/17.1 Blog post by Rachel Thomas (of fast.ai) on how and why you should create a validation set.html
108 Bytes
14. Neural Networks Deep Learning/26.1 Keras in TensorFlow Overview Documentation.html
108 Bytes
18. Learn Python Part 2/30.1 Solution Repl.html
108 Bytes
6. Pandas Data Analysis/13.1 Course notebooks - Github.html
108 Bytes
9. Scikit-learn Creating Machine Learning Models/2.2 Scikit-Learn Documentation.html
108 Bytes
14. Neural Networks Deep Learning/27.1 The Softmax Function (activation function we use in our model).html
107 Bytes
5. Data Science Environment Setup/5.1 Miniconda download documentation.html
107 Bytes
5. Data Science Environment Setup/7.1 Miniconda download documentation.html
107 Bytes
15. Storytelling + Communication How To Present Your Work/6.1 fast_template by fast.ai (a template you can use for your blog on GitHub Pages).html
106 Bytes
17. Learn Python/13.1 Exercise Repl.html
106 Bytes
17. Learn Python/14.1 Exercise Repl.html
106 Bytes
17. Learn Python/29.1 Python Comments Best Practices.html
106 Bytes
6. Pandas Data Analysis/3.1 Pandas Documentation.html
106 Bytes
17. Learn Python/10.1 Floating point numbers.html
104 Bytes
17. Learn Python/23.1 Exercise Repl.html
104 Bytes
17. Learn Python/5.2 The Story of Python.html
104 Bytes
8. Matplotlib Plotting and Data Visualization/2.2 Matplotlib Documentation.html
103 Bytes
18. Learn Python Part 2/20.1 Solution Repl.html
102 Bytes
18. Learn Python Part 2/43.1 Solution Repl.html
102 Bytes
17. Learn Python/24.1 Exercise Repl.html
101 Bytes
2. Machine Learning 101/3.1 Teachable Machine.html
101 Bytes
18. Learn Python Part 2/43.2 Exercise Repl.html
100 Bytes
18. Learn Python Part 2/18.1 Solution Repl.html
99 Bytes
18. Learn Python Part 2/18.2 Exercise Repl.html
99 Bytes
14. Neural Networks Deep Learning/18.1 TensorFlow guidelines for loading all kinds of data (turning your data into Tensors).html
98 Bytes
17. Learn Python/44.1 Exercise Repl.html
97 Bytes
14. Neural Networks Deep Learning/25.3 Andrei Karpathy's talk on AI at Tesla.html
95 Bytes
14. Neural Networks Deep Learning/4.2 Google Colab (our workspace for the upcoming project).html
95 Bytes
14. Neural Networks Deep Learning/5.1 Google Colab (our workspace for the upcoming project).html
95 Bytes
18. Learn Python Part 2/34.1 Solution Repl.html
95 Bytes
6. Pandas Data Analysis/13.2 Google Colab.html
95 Bytes
17. Learn Python/35.2 Exercise Repl.html
94 Bytes
17. Learn Python/37.1 Exercise Repl.html
94 Bytes
17. Learn Python/33.1 Exercise Repl.html
93 Bytes
5. Data Science Environment Setup/3.4 Conda documentation.html
93 Bytes
13. Data Engineering/2.1 Kaggle.html
92 Bytes
17. Learn Python/32.1 Exercise Repl.html
92 Bytes
18. Learn Python Part 2/12.1 Solution Repl.html
92 Bytes
17. Learn Python/48.2 Exercise Repl.html
91 Bytes
15. Storytelling + Communication How To Present Your Work/6.2 Devblog by Hashnode (an easy and free way to create a blog you own).html
89 Bytes
14. Neural Networks Deep Learning/25.4 Papers with Code (a great resource for some of the best machine learning papers with code examples).html
88 Bytes
2. Machine Learning 101/5.1 Machine Learning Playground.html
88 Bytes
14. Neural Networks Deep Learning/25.5 PyTorch Hub (PyTorch version of TensorFlow Hub).html
85 Bytes
7. NumPy/2.3 NumPy Documentation.html
83 Bytes
14. Neural Networks Deep Learning/23.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html
79 Bytes
14. Neural Networks Deep Learning/25.1 TensorFlow Hub (resource for pre-trained deep learning models and more).html
79 Bytes
[FreeAllCourse.Com].url
52 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>