MuerBT磁力搜索 BT种子搜索利器 免费下载BT种子,超5000万条种子数据

[FreeCourseLab.com] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp

磁力链接/BT种子名称

[FreeCourseLab.com] Udemy - The Data Science Course 2019 Complete Data Science Bootcamp

磁力链接/BT种子简介

种子哈希:f1f2d40f9a83ba4fb22e56ffdf7ecd687454d922
文件大小: 11.49G
已经下载:229次
下载速度:极快
收录时间:2021-04-10
最近下载:2025-05-27

移花宫入口

移花宫.com邀月.com怜星.com花无缺.comyhgbt.icuyhgbt.top

磁力链接下载

magnet:?xt=urn:btih:F1F2D40F9A83BA4FB22E56FFDF7ECD687454D922
推荐使用PIKPAK网盘下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看

下载BT种子文件

磁力链接 迅雷下载 PIKPAK在线播放 世界之窗 91视频 含羞草 欲漫涩 逼哩逼哩 成人快手 51品茶 抖阴破解版 极乐禁地 91短视频 暗网Xvideo TikTok成人版 PornHub 听泉鉴鲍 少女日记 草榴社区 哆哔涩漫 呦乐园 萝莉岛 悠悠禁区 悠悠禁区 拔萝卜 疯马秀

最近搜索

nsodn-003 大海探花 小狸酱 1977836 国产夫妻论坛 反差调教 皮条 輪姦 ssis-135 最新作品 主播乐乐 发达秘笈 调教羞辱 刷礼物 鱼里 痴人 私密分享交 完具 福建兄妹 超级丰满 母子、 单男合集 东北 熟女 波波妹妹 银月+ai 极品巨乳肥臀 rebel.moon.directors.cut. 1080p.x265 psa 多肉小 白阿姨 极品小萝莉无套

文件列表

  • 11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4 168.2 MB
  • 33. Part 5 Mathematics/16. Why is Linear Algebra Useful.mp4 151.3 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4 145.0 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.vtt 145.0 MB
  • 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4 133.0 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4 131.2 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4 129.5 MB
  • 46. Software Integration/5. Taking a Closer Look at APIs.mp4 121.2 MB
  • 15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4 117.7 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.mp4 114.3 MB
  • 46. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4 109.1 MB
  • 6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4 108.5 MB
  • 44. Deep Learning - Business Case Example/4. Business Case Preprocessing.mp4 108.4 MB
  • 14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4 107.7 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4 104.2 MB
  • 15. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.mp4 96.6 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4 94.3 MB
  • 44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.mp4 91.9 MB
  • 29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4 90.7 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.mp4 85.4 MB
  • 4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.mp4 85.1 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4 85.0 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.mp4 82.0 MB
  • 44. Deep Learning - Business Case Example/6. Creating a Data Provider.mp4 80.1 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4 79.2 MB
  • 17. Part 3 Introduction to Python/3. Why Python.mp4 78.7 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp4 78.2 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.mp4 78.1 MB
  • 8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4 76.4 MB
  • 46. Software Integration/9. Software Integration - Explained.mp4 76.2 MB
  • 10. Statistics - Descriptive Statistics/1. Types of Data.mp4 76.0 MB
  • 30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4 75.0 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.mp4 73.9 MB
  • 16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4 72.9 MB
  • 46. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp4 72.4 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.mp4 71.0 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4 67.7 MB
  • 12. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.mp4 65.9 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.mp4 65.8 MB
  • 1. Part 1 Introduction/2. What Does the Course Cover.mp4 65.3 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.mp4 64.9 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.mp4 64.8 MB
  • 12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4 64.6 MB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4 64.1 MB
  • 46. Software Integration/7. Communication between Software Products through Text Files.mp4 63.3 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.mp4 62.2 MB
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.mp4 62.2 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.mp4 62.0 MB
  • 45. Deep Learning - Conclusion/3. An overview of CNNs.mp4 61.6 MB
  • 17. Part 3 Introduction to Python/1. Introduction to Programming.mp4 61.4 MB
  • 9. Part 2 Statistics/1. Population and Sample.mp4 60.9 MB
  • 27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.mp4 60.2 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp4 60.1 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.mp4 59.8 MB
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.mp4 59.3 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.mp4 59.1 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).mp4 58.8 MB
  • 15. Statistics - Hypothesis Testing/10. p-value.mp4 58.6 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/18. Dealing with Categorical Data - Dummy Variables.mp4 58.4 MB
  • 35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4 58.3 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/3. Adjusted R-Squared.mp4 57.5 MB
  • 17. Part 3 Introduction to Python/7. Installing Python and Jupyter.mp4 57.1 MB
  • 10. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4 57.0 MB
  • 7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4 57.0 MB
  • 50. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.mp4 56.9 MB
  • 15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4 56.9 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.mp4 56.2 MB
  • 30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4 56.0 MB
  • 44. Deep Learning - Business Case Example/7. Business Case Model Outline.mp4 55.7 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.mp4 55.3 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.mp4 54.9 MB
  • 47. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4 54.8 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4 54.3 MB
  • 42. Deep Learning - Preprocessing/3. Standardization.mp4 53.5 MB
  • 10. Statistics - Descriptive Statistics/22. Variance.mp4 53.4 MB
  • 15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4 52.8 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.mp4 52.4 MB
  • 12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4 52.3 MB
  • 33. Part 5 Mathematics/5. Linear Algebra and Geometry.mp4 52.2 MB
  • 27. Advanced Statistical Methods - Linear regression/13. Decomposition of Variability.mp4 52.1 MB
  • 33. Part 5 Mathematics/15. Dot Product of Matrices.mp4 51.8 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.mp4 51.4 MB
  • 1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4 51.4 MB
  • 12. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.mp4 50.2 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp4 50.1 MB
  • 37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.mp4 50.0 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.mp4 49.0 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.mp4 48.0 MB
  • 10. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.mp4 47.3 MB
  • 35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4 47.3 MB
  • 45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4 46.9 MB
  • 27. Advanced Statistical Methods - Linear regression/11. How to Interpret the Regression Table.mp4 46.8 MB
  • 32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4 46.7 MB
  • 27. Advanced Statistical Methods - Linear regression/8. First Regression in Python.mp4 46.7 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.mp4 46.6 MB
  • 17. Part 3 Introduction to Python/5. Why Jupyter.mp4 46.5 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.mp4 46.3 MB
  • 15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4 46.1 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.mp4 46.0 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).mp4 45.1 MB
  • 35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4 45.0 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4 44.9 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/13. A3 Normality and Homoscedasticity.mp4 44.8 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.mp4 43.6 MB
  • 44. Deep Learning - Business Case Example/8. Business Case Optimization.mp4 43.5 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4 43.2 MB
  • 27. Advanced Statistical Methods - Linear regression/17. R-Squared.mp4 43.0 MB
  • 47. Case Study - What's Next in the Course/3. Introducing the Data Set.mp4 42.9 MB
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.mp4 42.6 MB
  • 27. Advanced Statistical Methods - Linear regression/7. Python Packages Installation.mp4 42.6 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp4 42.5 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.mp4 42.4 MB
  • 15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4 42.2 MB
  • 10. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.mp4 41.7 MB
  • 45. Deep Learning - Conclusion/1. Summary on What You've Learned.mp4 41.7 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4 41.5 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.mp4 41.5 MB
  • 35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4 41.3 MB
  • 44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.mp4 41.3 MB
  • 47. Case Study - What's Next in the Course/2. The Business Task.mp4 41.1 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.mp4 40.8 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4 40.6 MB
  • 37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4 40.4 MB
  • 10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4 40.3 MB
  • 29. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.mp4 40.3 MB
  • 35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4 40.2 MB
  • 33. Part 5 Mathematics/13. Transpose of a Matrix.mp4 39.9 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.mp4 39.5 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.mp4 39.3 MB
  • 37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.mp4 39.2 MB
  • 35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4 39.0 MB
  • 10. Statistics - Descriptive Statistics/17. Mean, median and mode.mp4 38.9 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4 38.6 MB
  • 44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.mp4 38.1 MB
  • 15. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).mp4 38.1 MB
  • 30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4 37.9 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/11. A2 No Endogeneity.mp4 37.4 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.mp4 37.2 MB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4 36.6 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.mp4 36.6 MB
  • 29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4 36.4 MB
  • 33. Part 5 Mathematics/3. Scalars and Vectors.mp4 35.5 MB
  • 33. Part 5 Mathematics/1. What is a matrix.mp4 35.2 MB
  • 25. Python - Advanced Python Tools/1. Object Oriented Programming.mp4 35.2 MB
  • 21. Python - Conditional Statements/4. The ELIF Statement.mp4 34.8 MB
  • 29. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.mp4 34.5 MB
  • 39. Deep Learning - Overfitting/3. What is Validation.mp4 34.3 MB
  • 33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.mp4 34.2 MB
  • 37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.mp4 34.1 MB
  • 29. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.mp4 33.8 MB
  • 29. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.mp4 33.8 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.mp4 33.8 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/14. A4 No Autocorrelation.mp4 33.1 MB
  • 27. Advanced Statistical Methods - Linear regression/7. Python Packages Installation.vtt 32.9 MB
  • 34. Part 6 Deep Learning/1. What to Expect from this Part.mp4 32.6 MB
  • 39. Deep Learning - Overfitting/1. What is Overfitting.mp4 32.6 MB
  • 23. Python - Sequences/5. List Slicing.mp4 32.3 MB
  • 18. Python - Variables and Data Types/5. Python Strings.mp4 32.3 MB
  • 17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4 32.1 MB
  • 29. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.mp4 32.0 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.mp4 31.6 MB
  • 20. Python - Other Python Operators/3. Logical and Identity Operators.mp4 31.5 MB
  • 15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).mp4 31.4 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4 31.4 MB
  • 32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4 31.1 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4 31.0 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.mp4 31.0 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4 30.9 MB
  • 10. Statistics - Descriptive Statistics/30. Correlation Coefficient.mp4 30.8 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4 30.5 MB
  • 32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4 30.5 MB
  • 42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4 30.4 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).mp4 30.2 MB
  • 35. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4 30.1 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/16. A5 No Multicollinearity.mp4 30.1 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.mp4 30.1 MB
  • 35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4 29.8 MB
  • 27. Advanced Statistical Methods - Linear regression/15. What is the OLS.mp4 29.7 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp4 29.3 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.mp4 29.2 MB
  • 42. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4 29.1 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.mp4 29.0 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.mp4 28.9 MB
  • 10. Statistics - Descriptive Statistics/27. Covariance.mp4 28.8 MB
  • 10. Statistics - Descriptive Statistics/27. Covariance.vtt 28.8 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4 28.6 MB
  • 29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4 28.4 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).mp4 28.1 MB
  • 33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4 28.0 MB
  • 18. Python - Variables and Data Types/1. Variables.mp4 27.9 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4 27.6 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.mp4 27.2 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.mp4 27.1 MB
  • 10. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.mp4 27.1 MB
  • 44. Deep Learning - Business Case Example/9. Business Case Interpretation.mp4 27.0 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4 26.9 MB
  • 50. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.mp4 26.7 MB
  • 45. Deep Learning - Conclusion/5. An Overview of RNNs.mp4 26.5 MB
  • 39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4 26.4 MB
  • 39. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.vtt 26.4 MB
  • 35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4 26.3 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.mp4 26.3 MB
  • 39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4 26.3 MB
  • 23. Python - Sequences/7. Dictionaries.mp4 26.3 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/20. Making Predictions with the Linear Regression.mp4 25.9 MB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4 25.6 MB
  • 39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4 25.3 MB
  • 33. Part 5 Mathematics/14. Dot Product.mp4 25.2 MB
  • 22. Python - Python Functions/2. How to Create a Function with a Parameter.mp4 25.0 MB
  • 35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4 24.4 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.mp4 24.3 MB
  • 29. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.mp4 24.2 MB
  • 12. Statistics - Inferential Statistics Fundamentals/11. Standard error.mp4 23.9 MB
  • 35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4 23.8 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4 23.7 MB
  • 33. Part 5 Mathematics/8. What is a Tensor.mp4 23.6 MB
  • 12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4 23.6 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).mp4 23.4 MB
  • 29. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.mp4 23.4 MB
  • 5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4 23.1 MB
  • 22. Python - Python Functions/7. Built-in Functions in Python.mp4 23.1 MB
  • 23. Python - Sequences/1. Lists.mp4 23.1 MB
  • 23. Python - Sequences/3. Using Methods.mp4 23.0 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/7. OLS Assumptions.mp4 22.9 MB
  • 40. Deep Learning - Initialization/1. What is Initialization.mp4 22.8 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp4 22.7 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.mp4 22.6 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.mp4 22.3 MB
  • 39. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4 21.7 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.mp4 21.6 MB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4 21.6 MB
  • 37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.mp4 21.3 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.mp4 21.2 MB
  • 45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4 21.1 MB
  • 13. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).mp4 20.9 MB
  • 25. Python - Advanced Python Tools/7. Importing Modules in Python.mp4 20.9 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.mp4 20.4 MB
  • 10. Statistics - Descriptive Statistics/19. Skewness.mp4 20.3 MB
  • 19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4 19.8 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.mp4 19.8 MB
  • 42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4 19.5 MB
  • 25. Python - Advanced Python Tools/5. What is the Standard Library.mp4 18.9 MB
  • 35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4 18.8 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.mp4 18.7 MB
  • 37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.mp4 18.3 MB
  • 26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4 18.2 MB
  • 40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4 18.0 MB
  • 29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4 17.9 MB
  • 18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4 17.9 MB
  • 24. Python - Iterations/8. How to Iterate over Dictionaries.mp4 17.8 MB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.mp4 17.6 MB
  • 23. Python - Sequences/6. Tuples.mp4 17.5 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.mp4 17.2 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/6. Test for Significance of the Model (F-Test).mp4 17.2 MB
  • 24. Python - Iterations/6. Conditional Statements and Loops.mp4 16.9 MB
  • 22. Python - Python Functions/5. Conditional Statements and Functions.mp4 16.4 MB
  • 12. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4 16.2 MB
  • 24. Python - Iterations/3. While Loops and Incrementing.mp4 16.2 MB
  • 22. Python - Python Functions/3. Defining a Function in Python - Part II.mp4 15.5 MB
  • 27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.mp4 15.5 MB
  • 30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4 15.3 MB
  • 37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.mp4 15.3 MB
  • 40. Deep Learning - Initialization/2. Types of Simple Initializations.mp4 15.0 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp4 14.7 MB
  • 17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4 14.5 MB
  • 10. Statistics - Descriptive Statistics/11. The Histogram.mp4 14.4 MB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp4 14.4 MB
  • 21. Python - Conditional Statements/1. The IF Statement.mp4 14.3 MB
  • 21. Python - Conditional Statements/3. The ELSE Statement.mp4 14.3 MB
  • 43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.mp4 13.5 MB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/9. A1 Linearity.mp4 13.2 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.mp4 13.1 MB
  • 27. Advanced Statistical Methods - Linear regression/10. Using Seaborn for Graphs.mp4 12.8 MB
  • 44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4 12.8 MB
  • 42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4 12.4 MB
  • 24. Python - Iterations/1. For Loops.mp4 12.4 MB
  • 24. Python - Iterations/4. Lists with the range() Function.mp4 12.0 MB
  • 21. Python - Conditional Statements/5. A Note on Boolean Values.vtt 11.8 MB
  • 21. Python - Conditional Statements/5. A Note on Boolean Values.mp4 11.8 MB
  • 44. Deep Learning - Business Case Example/10. Business Case Testing the Model.mp4 11.8 MB
  • 33. Part 5 Mathematics/12. Errors when Adding Matrices.mp4 11.7 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.mp4 11.6 MB
  • 20. Python - Other Python Operators/1. Comparison Operators.mp4 10.7 MB
  • 31. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.mp4 10.4 MB
  • 24. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4 9.9 MB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.mp4 9.5 MB
  • 25. Python - Advanced Python Tools/3. Modules and Packages.mp4 8.9 MB
  • 22. Python - Python Functions/4. How to Use a Function within a Function.mp4 8.5 MB
  • 22. Python - Python Functions/1. Defining a Function in Python.mp4 8.1 MB
  • 22. Python - Python Functions/6. Functions Containing a Few Arguments.mp4 7.9 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/7.1 365_DataScience.png.png 7.3 MB
  • 2. The Field of Data Science - The Various Data Science Disciplines/9.1 365_DataScience.png.png 7.3 MB
  • 19. Python - Basic Python Syntax/12. Structuring with Indentation.mp4 7.2 MB
  • 19. Python - Basic Python Syntax/3. The Double Equality Sign.mp4 6.3 MB
  • 19. Python - Basic Python Syntax/10. Indexing Elements.mp4 6.2 MB
  • 27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.mp4 5.4 MB
  • 19. Python - Basic Python Syntax/7. Add Comments.mp4 5.2 MB
  • 19. Python - Basic Python Syntax/5. How to Reassign Values.mp4 4.2 MB
  • 19. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4 2.5 MB
  • 18. Python - Variables and Data Types/1.1 Python Introduction - Course Notes.pdf.pdf 2.1 MB
  • 14. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx.xlsx 1.8 MB
  • 14. Statistics - Practical Example Inferential Statistics/2.1 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx.xlsx 1.8 MB
  • 14. Statistics - Practical Example Inferential Statistics/2.2 3.17. Practical example. Confidence intervals_exercise.xlsx.xlsx 1.8 MB
  • 15. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf.pdf 1.3 MB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1.1 Course Notes - Section 6.pdf.pdf 958.9 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2.1 Course Notes - Section 6.pdf.pdf 958.9 kB
  • 35. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf.pdf 949.9 kB
  • 35. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf.pdf 949.9 kB
  • 44. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv.csv 727.8 kB
  • 15. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf.pdf 663.8 kB
  • 15. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf.pdf 663.8 kB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.2 Shortcuts-for-Jupyter.pdf.pdf 634.0 kB
  • 37. Deep Learning - TensorFlow Introduction/1.1 Shortcuts-for-Jupyter.pdf.pdf 634.0 kB
  • 37. Deep Learning - TensorFlow Introduction/4.1 Shortcuts-for-Jupyter.pdf.pdf 634.0 kB
  • 10. Statistics - Descriptive Statistics/1.1 Course notes_descriptive_statistics.pdf.pdf 493.8 kB
  • 9. Part 2 Statistics/1.2 Course notes_descriptive_statistics.pdf.pdf 493.8 kB
  • 12. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf.pdf 391.5 kB
  • 12. Statistics - Inferential Statistics Fundamentals/2.1 Course notes_inferential statistics.pdf.pdf 391.5 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/5.1 365_DataScience_Diagram.pdf.pdf 330.8 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/7.2 365_DataScience_Diagram.pdf.pdf 330.8 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf 186.7 kB
  • 11. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx.xlsx 150.0 kB
  • 11. Statistics - Practical Example Descriptive Statistics/2.1 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx.xlsx 149.7 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/1.1 data_preprocessing_homework.pdf.pdf 137.7 kB
  • 11. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx.xlsx 123.2 kB
  • 16. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx.xlsx 53.0 kB
  • 16. Statistics - Practical Example Hypothesis Testing/2.1 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx.xlsx 45.1 kB
  • 16. Statistics - Practical Example Hypothesis Testing/2.2 4.10. Hypothesis testing section_practical example_exercise.xlsx.xlsx 44.4 kB
  • 35. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx.xlsx 43.2 kB
  • 10. Statistics - Descriptive Statistics/7.2 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx.xlsx 42.1 kB
  • 10. Statistics - Descriptive Statistics/16.2 2.6. Cross table and scatter plot_exercise_solution.xlsx.xlsx 41.4 kB
  • 10. Statistics - Descriptive Statistics/19.1 2.8. Skewness_lesson.xlsx.xlsx 35.5 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/1.3 Absenteeism_data.csv.csv 32.8 kB
  • 10. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx.xlsx 31.5 kB
  • 10. Statistics - Descriptive Statistics/29.2 2.11. Covariance_exercise_solution.xlsx.xlsx 30.2 kB
  • 10. Statistics - Descriptive Statistics/32.1 2.12. Correlation_exercise_solution.xlsx.xlsx 30.2 kB
  • 10. Statistics - Descriptive Statistics/32.2 2.12. Correlation_exercise.xlsx.xlsx 30.0 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1.1 Absenteeism_preprocessed.csv.csv 29.8 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/1.2 df_preprocessed.csv.csv 29.8 kB
  • 10. Statistics - Descriptive Statistics/14.1 2.6. Cross table and scatter plot.xlsx.xlsx 26.7 kB
  • 10. Statistics - Descriptive Statistics/27.1 2.11. Covariance_lesson.xlsx.xlsx 25.5 kB
  • 12. Statistics - Inferential Statistics Fundamentals/8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx.xlsx 24.6 kB
  • 9. Part 2 Statistics/1.1 Statistics Glossary.xlsx.xlsx 20.8 kB
  • 10. Statistics - Descriptive Statistics/29.1 2.11. Covariance_exercise.xlsx.xlsx 20.7 kB
  • 10. Statistics - Descriptive Statistics/21.2 2.8. Skewness_exercise_solution.xlsx.xlsx 20.2 kB
  • 29. Advanced Statistical Methods - Logistic Regression/11.2 Bank_data.csv.csv 20.0 kB
  • 29. Advanced Statistical Methods - Logistic Regression/13.3 Bank_data.csv.csv 20.0 kB
  • 29. Advanced Statistical Methods - Logistic Regression/16.2 Bank_data.csv.csv 20.0 kB
  • 29. Advanced Statistical Methods - Logistic Regression/8.2 Bank_data.csv.csv 20.0 kB
  • 12. Statistics - Inferential Statistics Fundamentals/2.2 3.2. What is a distribution_lesson.xlsx.xlsx 19.9 kB
  • 10. Statistics - Descriptive Statistics/11.1 2.5. The Histogram_lesson.xlsx.xlsx 19.1 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/3.1 3.9. The z-table.xlsx.xlsx 18.9 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/4.3 3.9. The z-table.xlsx.xlsx 18.9 kB
  • 11. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.vtt 18.4 kB
  • 10. Statistics - Descriptive Statistics/13.2 2.5.The-Histogram-exercise-solution.xlsx.xlsx 17.5 kB
  • 10. Statistics - Descriptive Statistics/16.1 2.6. Cross table and scatter plot_exercise.xlsx.xlsx 16.7 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/8.2 3.11. The t-table.xlsx.xlsx 16.2 kB
  • 10. Statistics - Descriptive Statistics/13.1 2.5.The-Histogram-exercise.xlsx.xlsx 15.9 kB
  • 10. Statistics - Descriptive Statistics/7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx.xlsx 15.6 kB
  • 15. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx.xlsx 14.9 kB
  • 15. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx.xlsx 14.7 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx.xlsx 14.6 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx.xlsx 14.1 kB
  • 10. Statistics - Descriptive Statistics/10.2 2.4. Numerical variables. Frequency distribution table_exercise_solution.xlsx.xlsx 13.5 kB
  • 15. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise.xlsx.xlsx 13.1 kB
  • 15. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx.xlsx 13.0 kB
  • 10. Statistics - Descriptive Statistics/26.2 2.10. Standard deviation and coefficient of variation_exercise_solution.xlsx.xlsx 12.7 kB
  • 12. Statistics - Inferential Statistics Fundamentals/8.1 3.4.Standard-normal-distribution-exercise.xlsx.xlsx 12.3 kB
  • 14. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.vtt 12.2 kB
  • 10. Statistics - Descriptive Statistics/10.1 2.4. Numerical variables. Frequency distribution table_exercise.xlsx.xlsx 12.0 kB
  • 44. Deep Learning - Business Case Example/4. Business Case Preprocessing.vtt 12.0 kB
  • 10. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx.xlsx 11.7 kB
  • 15. Statistics - Hypothesis Testing/20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx.xlsx 11.7 kB
  • 10. Statistics - Descriptive Statistics/18.1 2.7. Mean, median and mode_exercise_solution.xlsx.xlsx 11.6 kB
  • 15. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx.xlsx 11.6 kB
  • 10. Statistics - Descriptive Statistics/26.1 2.10. Standard deviation and coefficient of variation_exercise.xlsx.xlsx 11.6 kB
  • 15. Statistics - Hypothesis Testing/17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx.xlsx 11.5 kB
  • 15. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise_solution.xlsx.xlsx 11.5 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/3.2 3.9. Population variance known, z-score_lesson.xlsx.xlsx 11.5 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/4.1 3.9. Population variance known, z-score_exercise_solution.xlsx.xlsx 11.4 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/9.2 3.11. Population variance unknown, t-score_exercise_solution.xlsx.xlsx 11.4 kB
  • 10. Statistics - Descriptive Statistics/23.2 2.9. Variance_exercise_solution.xlsx.xlsx 11.3 kB
  • 15. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise.xlsx.xlsx 11.3 kB
  • 10. Statistics - Descriptive Statistics/24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx.xlsx 11.2 kB
  • 15. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx.xlsx 11.2 kB
  • 10. Statistics - Descriptive Statistics/18.2 2.7. Mean, median and mode_exercise.xlsx.xlsx 11.1 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/4.2 3.9. Population variance known, z-score_exercise.xlsx.xlsx 11.1 kB
  • 10. Statistics - Descriptive Statistics/23.1 2.9. Variance_exercise.xlsx.xlsx 11.1 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/8.1 3.11. Population variance unknown, t-score_lesson.xlsx.xlsx 11.0 kB
  • 15. Statistics - Hypothesis Testing/17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx.xlsx 11.0 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/9.1 3.11. Population variance unknown, t-score_exercise.xlsx.xlsx 10.9 kB
  • 15. Statistics - Hypothesis Testing/20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx.xlsx 10.8 kB
  • 10. Statistics - Descriptive Statistics/17.1 2.7. Mean, median and mode_lesson.xlsx.xlsx 10.7 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx.xlsx 10.7 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/7. Continuing with BI, ML, and AI.vtt 10.7 kB
  • 12. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx.xlsx 10.6 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/5.1 Categorical.csv.csv 10.6 kB
  • 33. Part 5 Mathematics/16. Why is Linear Algebra Useful.vtt 10.6 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx.xlsx 10.4 kB
  • 10. Statistics - Descriptive Statistics/22.1 2.9. Variance_lesson.xlsx.xlsx 10.3 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx.xlsx 10.1 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx.xlsx 10.1 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx.xlsx 10.0 kB
  • 15. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx.xlsx 10.0 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.vtt 9.9 kB
  • 15. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx.xlsx 9.9 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx.xlsx 9.7 kB
  • 10. Statistics - Descriptive Statistics/21.1 2.8. Skewness_exercise.xlsx.xlsx 9.7 kB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).vtt 9.7 kB
  • 44. Deep Learning - Business Case Example/1. Business Case Getting acquainted with the dataset.vtt 9.6 kB
  • 15. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx.xlsx 9.5 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/5. Business Analytics, Data Analytics, and Data Science An Introduction.vtt 9.5 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.vtt 9.5 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx.xlsx 9.4 kB
  • 46. Software Integration/5. Taking a Closer Look at APIs.vtt 9.4 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.vtt 9.2 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Learning.vtt 9.1 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.vtt 9.0 kB
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.vtt 9.0 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/3. Confidence Intervals; Population Variance Known; z-score.vtt 8.9 kB
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.vtt 8.6 kB
  • 29. Advanced Statistical Methods - Logistic Regression/16.1 Bank_data_testing.csv.csv 8.5 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.vtt 8.5 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/3.1 Countries_exercise.csv.csv 8.5 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/7.3 Countries_exercise.csv.csv 8.5 kB
  • 33. Part 5 Mathematics/15. Dot Product of Matrices.vtt 8.4 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).vtt 8.1 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Model Outline.vtt 8.1 kB
  • 3. The Field of Data Science - Connecting the Data Science Disciplines/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt 8.1 kB
  • 15. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.vtt 8.0 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.vtt 7.9 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.vtt 7.7 kB
  • 46. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.vtt 7.7 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.vtt 7.6 kB
  • 35. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.vtt 7.6 kB
  • 16. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.vtt 7.6 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/2. Creating the Targets for the Logistic Regression.vtt 7.5 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Results and Testing.vtt 7.3 kB
  • 15. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.vtt 7.3 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/18. Dealing with Categorical Data - Dummy Variables.vtt 7.3 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Dependent samples.vtt 7.3 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/5. Splitting the Data for Training and Testing.vtt 7.2 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.vtt 7.1 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/8. Interpreting the Coefficients for Our Problem.vtt 7.1 kB
  • 27. Advanced Statistical Methods - Linear regression/8. First Regression in Python.vtt 7.1 kB
  • 37. Deep Learning - TensorFlow Introduction/8. Basic NN Example with TF Model Output.vtt 7.0 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.vtt 7.0 kB
  • 17. Part 3 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.vtt 7.0 kB
  • 44. Deep Learning - Business Case Example/6. Creating a Data Provider.vtt 7.0 kB
  • 10. Statistics - Descriptive Statistics/22. Variance.vtt 6.8 kB
  • 50. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.vtt 6.8 kB
  • 35. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.vtt 6.8 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/3. Adjusted R-Squared.vtt 6.7 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).vtt 6.7 kB
  • 37. Deep Learning - TensorFlow Introduction/6. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt 6.6 kB
  • 18. Python - Variables and Data Types/5. Python Strings.vtt 6.6 kB
  • 15. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.vtt 6.6 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.vtt 6.6 kB
  • 6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.vtt 6.6 kB
  • 32. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.vtt 6.6 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/6. Fitting the Model and Assessing its Accuracy.vtt 6.6 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.vtt 6.5 kB
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.vtt 6.5 kB
  • 17. Part 3 Introduction to Python/7. Installing Python and Jupyter.vtt 6.4 kB
  • 29. Advanced Statistical Methods - Logistic Regression/5.3 Example_bank_data.csv.csv 6.4 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.vtt 6.3 kB
  • 27. Advanced Statistical Methods - Linear regression/1. The Linear Regression Model.vtt 6.3 kB
  • 17. Part 3 Introduction to Python/3. Why Python.vtt 6.3 kB
  • 17. Part 3 Introduction to Python/1. Introduction to Programming.vtt 6.2 kB
  • 44. Deep Learning - Business Case Example/7. Business Case Model Outline.vtt 6.2 kB
  • 39. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.vtt 6.2 kB
  • 46. Software Integration/9. Software Integration - Explained.vtt 6.1 kB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).vtt 6.0 kB
  • 10. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.vtt 6.0 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/1. Data Science and Business Buzzwords Why are there so many.vtt 6.0 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/3. Digging into a Deep Net.vtt 6.0 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/13. A3 Normality and Homoscedasticity.vtt 6.0 kB
  • 27. Advanced Statistical Methods - Linear regression/17. R-Squared.vtt 5.9 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/7. Creating a Summary Table with the Coefficients and Intercept.vtt 5.9 kB
  • 44. Deep Learning - Business Case Example/8. Business Case Optimization.vtt 5.9 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.vtt 5.9 kB
  • 10. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.vtt 5.9 kB
  • 21. Python - Conditional Statements/4. The ELIF Statement.vtt 5.9 kB
  • 29. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.vtt 5.8 kB
  • 4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason behind these Disciplines.vtt 5.8 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.vtt 5.8 kB
  • 10. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.vtt 5.8 kB
  • 45. Deep Learning - Conclusion/3. An overview of CNNs.vtt 5.8 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.vtt 5.8 kB
  • 1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.vtt 5.8 kB
  • 15. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.vtt 5.7 kB
  • 27. Advanced Statistical Methods - Linear regression/11. How to Interpret the Regression Table.vtt 5.6 kB
  • 32. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.vtt 5.6 kB
  • 30. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.vtt 5.6 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/10. Margin of Error.vtt 5.5 kB
  • 18. Python - Variables and Data Types/1. Variables.vtt 5.5 kB
  • 25. Python - Advanced Python Tools/1. Object Oriented Programming.vtt 5.5 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent samples (Part 1).vtt 5.5 kB
  • 33. Part 5 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.vtt 5.4 kB
  • 42. Deep Learning - Preprocessing/3. Standardization.vtt 5.4 kB
  • 10. Statistics - Descriptive Statistics/1. Types of Data.vtt 5.4 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt 5.3 kB
  • 46. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.vtt 5.3 kB
  • 35. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.vtt 5.3 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.vtt 5.3 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.vtt 5.2 kB
  • 15. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.vtt 5.2 kB
  • 12. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.vtt 5.2 kB
  • 29. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.vtt 5.2 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/8. Confidence Intervals; Population Variance Unknown; t-score.vtt 5.1 kB
  • 10. Statistics - Descriptive Statistics/17. Mean, median and mode.vtt 5.1 kB
  • 20. Python - Other Python Operators/3. Logical and Identity Operators.vtt 5.1 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.vtt 5.1 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.vtt 5.1 kB
  • 12. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.vtt 5.1 kB
  • 39. Deep Learning - Overfitting/1. What is Overfitting.vtt 5.1 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.vtt 5.0 kB
  • 15. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.vtt 5.0 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.vtt 5.0 kB
  • 29. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.vtt 5.0 kB
  • 23. Python - Sequences/5. List Slicing.vtt 4.9 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/5. Confidence Interval Clarifications.vtt 4.9 kB
  • 9. Part 2 Statistics/1. Population and Sample.vtt 4.9 kB
  • 46. Software Integration/7. Communication between Software Products through Text Files.vtt 4.9 kB
  • 47. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt 4.9 kB
  • 15. Statistics - Hypothesis Testing/16. Test for the mean. Independent samples (Part 1).vtt 4.9 kB
  • 35. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.vtt 4.9 kB
  • 29. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.vtt 4.9 kB
  • 15. Statistics - Hypothesis Testing/18. Test for the mean. Independent samples (Part 2).vtt 4.8 kB
  • 8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.vtt 4.8 kB
  • 33. Part 5 Mathematics/13. Transpose of a Matrix.vtt 4.8 kB
  • 44. Deep Learning - Business Case Example/11. Business Case A Comment on the Homework.vtt 4.8 kB
  • 35. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.vtt 4.7 kB
  • 45. Deep Learning - Conclusion/1. Summary on What You've Learned.vtt 4.7 kB
  • 37. Deep Learning - TensorFlow Introduction/3. TensorFlow Outline and Logic.vtt 4.7 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/11. A2 No Endogeneity.vtt 4.7 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/5. Activation Functions.vtt 4.7 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.vtt 4.7 kB
  • 35. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.vtt 4.7 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt 4.7 kB
  • 45. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.vtt 4.7 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/6. Calculating the Accuracy of the Model.vtt 4.6 kB
  • 1. Part 1 Introduction/2. What Does the Course Cover.vtt 4.6 kB
  • 15. Statistics - Hypothesis Testing/10. p-value.vtt 4.6 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/9. A Breakdown of our Data Science Infographic.vtt 4.6 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.vtt 4.5 kB
  • 2. The Field of Data Science - The Various Data Science Disciplines/3. What is the difference between Analysis and Analytics.vtt 4.5 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt 4.5 kB
  • 29. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.vtt 4.5 kB
  • 12. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.vtt 4.4 kB
  • 23. Python - Sequences/1. Lists.vtt 4.4 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/14. A4 No Autocorrelation.vtt 4.4 kB
  • 29. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.vtt 4.4 kB
  • 39. Deep Learning - Overfitting/3. What is Validation.vtt 4.4 kB
  • 37. Deep Learning - TensorFlow Introduction/7. Basic NN Example with TF Loss Function and Gradient Descent.vtt 4.3 kB
  • 30. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.vtt 4.3 kB
  • 50. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.vtt 4.3 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/1. Stochastic Gradient Descent.vtt 4.3 kB
  • 29. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.vtt 4.3 kB
  • 42. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.vtt 4.3 kB
  • 25. Python - Advanced Python Tools/7. Importing Modules in Python.vtt 4.3 kB
  • 10. Statistics - Descriptive Statistics/30. Correlation Coefficient.vtt 4.2 kB
  • 32. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.vtt 4.2 kB
  • 17. Part 3 Introduction to Python/5. Why Jupyter.vtt 4.2 kB
  • 34. Part 6 Deep Learning/1. What to Expect from this Part.vtt 4.1 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/16. A5 No Multicollinearity.vtt 4.1 kB
  • 10. Statistics - Descriptive Statistics/3. Levels of Measurement.vtt 4.1 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/1. Exploring the Problem with a Machine Learning Mindset.vtt 4.1 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.vtt 4.1 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/16. Confidence intervals. Two means. Independent samples (Part 2).vtt 4.1 kB
  • 7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.vtt 4.0 kB
  • 44. Deep Learning - Business Case Example/3. The Importance of Working with a Balanced Dataset.vtt 4.0 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/7. Backpropagation.vtt 4.0 kB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).vtt 4.0 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.vtt 4.0 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/6. Activation Functions Softmax Activation.vtt 4.0 kB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).vtt 4.0 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/20. Making Predictions with the Linear Regression.vtt 4.0 kB
  • 10. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.vtt 3.9 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.vtt 3.9 kB
  • 33. Part 5 Mathematics/1. What is a matrix.vtt 3.9 kB
  • 35. Deep Learning - Introduction to Neural Networks/3. Training the Model.vtt 3.9 kB
  • 22. Python - Python Functions/2. How to Create a Function with a Parameter.vtt 3.9 kB
  • 33. Part 5 Mathematics/14. Dot Product.vtt 3.8 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/6. Student's T Distribution.vtt 3.8 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/4. Standardizing the Data.vtt 3.8 kB
  • 22. Python - Python Functions/7. Built-in Functions in Python.vtt 3.8 kB
  • 39. Deep Learning - Overfitting/5. N-Fold Cross Validation.vtt 3.8 kB
  • 27. Advanced Statistical Methods - Linear regression/13. Decomposition of Variability.vtt 3.8 kB
  • 47. Case Study - What's Next in the Course/3. Introducing the Data Set.vtt 3.7 kB
  • 23. Python - Sequences/7. Dictionaries.vtt 3.7 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/15.2 iris_with_answers.csv.csv 3.7 kB
  • 29. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.vtt 3.7 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.vtt 3.7 kB
  • 19. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.vtt 3.7 kB
  • 33. Part 5 Mathematics/5. Linear Algebra and Geometry.vtt 3.6 kB
  • 30. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.vtt 3.6 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.vtt 3.6 kB
  • 33. Part 5 Mathematics/10. Addition and Subtraction of Matrices.vtt 3.6 kB
  • 23. Python - Sequences/3. Using Methods.vtt 3.6 kB
  • 12. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.vtt 3.5 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/8. Backpropagation picture.vtt 3.5 kB
  • 35. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).vtt 3.5 kB
  • 42. Deep Learning - Preprocessing/1. Preprocessing Introduction.vtt 3.5 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/4. Non-Linearities and their Purpose.vtt 3.5 kB
  • 24. Python - Iterations/8. How to Iterate over Dictionaries.vtt 3.4 kB
  • 27. Advanced Statistical Methods - Linear regression/15. What is the OLS.vtt 3.4 kB
  • 45. Deep Learning - Conclusion/5. An Overview of RNNs.vtt 3.4 kB
  • 47. Case Study - What's Next in the Course/2. The Business Task.vtt 3.4 kB
  • 33. Part 5 Mathematics/3. Scalars and Vectors.vtt 3.4 kB
  • 12. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.vtt 3.4 kB
  • 17. Part 3 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.vtt 3.3 kB
  • 40. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt 3.3 kB
  • 40. Deep Learning - Initialization/2. Types of Simple Initializations.vtt 3.3 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.vtt 3.3 kB
  • 10. Statistics - Descriptive Statistics/19. Skewness.vtt 3.3 kB
  • 18. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.vtt 3.2 kB
  • 33. Part 5 Mathematics/8. What is a Tensor.vtt 3.2 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.vtt 3.2 kB
  • 25. Python - Advanced Python Tools/5. What is the Standard Library.vtt 3.2 kB
  • 24. Python - Iterations/6. Conditional Statements and Loops.vtt 3.2 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.vtt 3.2 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/3. Selecting the Inputs for the Logistic Regression.vtt 3.2 kB
  • 21. Python - Conditional Statements/1. The IF Statement.vtt 3.2 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Loss and Optimization Algorithm.vtt 3.2 kB
  • 40. Deep Learning - Initialization/1. What is Initialization.vtt 3.2 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/1. MNIST What is the MNIST Dataset.vtt 3.1 kB
  • 22. Python - Python Functions/5. Conditional Statements and Functions.vtt 3.1 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/3. Momentum.vtt 3.1 kB
  • 37. Deep Learning - TensorFlow Introduction/5. Types of File Formats, supporting Tensors.vtt 3.1 kB
  • 23. Python - Sequences/6. Tuples.vtt 3.0 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/1. Multiple Linear Regression.vtt 3.0 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/7. Adam (Adaptive Moment Estimation).vtt 3.0 kB
  • 29. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.vtt 3.0 kB
  • 30. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.vtt 3.0 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/1. What are Confidence Intervals.vtt 2.9 kB
  • 37. Deep Learning - TensorFlow Introduction/1. How to Install TensorFlow.vtt 2.9 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/5. What's Regression Analysis - a Quick Refresher.html 2.9 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/2. What is a Deep Net.vtt 2.9 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.vtt 2.9 kB
  • 29. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.vtt 2.8 kB
  • 35. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.vtt 2.8 kB
  • 22. Python - Python Functions/3. Defining a Function in Python - Part II.vtt 2.8 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/7. OLS Assumptions.vtt 2.7 kB
  • 10. Statistics - Descriptive Statistics/11. The Histogram.vtt 2.7 kB
  • 44. Deep Learning - Business Case Example/9. Business Case Interpretation.vtt 2.7 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).vtt 2.6 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Batching and Early Stopping.vtt 2.6 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/2. Problems with Gradient Descent.vtt 2.6 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/1. What to Expect from the Following Sections.html 2.5 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.vtt 2.5 kB
  • 21. Python - Conditional Statements/3. The ELSE Statement.vtt 2.5 kB
  • 24. Python - Iterations/4. Lists with the range() Function.vtt 2.5 kB
  • 24. Python - Iterations/1. For Loops.vtt 2.5 kB
  • 35. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.vtt 2.5 kB
  • 42. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.vtt 2.5 kB
  • 24. Python - Iterations/3. While Loops and Incrementing.vtt 2.5 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/14.3 iris_dataset.csv.csv 2.5 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/15.1 iris_dataset.csv.csv 2.5 kB
  • 44. Deep Learning - Business Case Example/10. Business Case Testing the Model.vtt 2.4 kB
  • 35. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.vtt 2.4 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/14. Dropping a Dummy Variable from the Data Set.html 2.4 kB
  • 37. Deep Learning - TensorFlow Introduction/2. A Note on Installing Packages in Anaconda.html 2.4 kB
  • 39. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.vtt 2.4 kB
  • 33. Part 5 Mathematics/12. Errors when Adding Matrices.vtt 2.3 kB
  • 45. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.vtt 2.3 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/6. Test for Significance of the Model (F-Test).vtt 2.3 kB
  • 22. Python - Python Functions/1. Defining a Function in Python.vtt 2.3 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.vtt 2.2 kB
  • 44. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.vtt 2.2 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/11. MNIST Solutions.html 2.2 kB
  • 15. Statistics - Hypothesis Testing/2. Further Reading on Null and Alternative Hypothesis.html 2.2 kB
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/14. ARTICLE - A Note on 'pickling'.html 2.2 kB
  • 20. Python - Other Python Operators/1. Comparison Operators.vtt 2.2 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Exercises.html 2.2 kB
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/1. What is a Layer.vtt 2.2 kB
  • 24. Python - Iterations/7. Conditional Statements, Functions, and Loops.vtt 2.1 kB
  • 28. Advanced Statistical Methods - Multiple Linear Regression/9. A1 Linearity.vtt 2.1 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.vtt 2.0 kB
  • 19. Python - Basic Python Syntax/12. Structuring with Indentation.vtt 2.0 kB
  • 26. Part 4 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.vtt 2.0 kB
  • 37. Deep Learning - TensorFlow Introduction/4. Actual Introduction to TensorFlow.vtt 2.0 kB
  • 31. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.vtt 2.0 kB
  • 41. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/5. Learning Rate Schedules Visualized.vtt 1.9 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).vtt 1.9 kB
  • 43. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Relevant Packages.vtt 1.9 kB
  • 35. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.vtt 1.9 kB
  • 27. Advanced Statistical Methods - Linear regression/3. Correlation vs Regression.vtt 1.9 kB
  • 22. Python - Python Functions/4. How to Use a Function within a Function.vtt 1.8 kB
  • 12. Statistics - Inferential Statistics Fundamentals/11. Standard error.vtt 1.8 kB
  • 13. Statistics - Inferential Statistics Confidence Intervals/18. Confidence intervals. Two means. Independent samples (Part 3).vtt 1.8 kB
  • 5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.vtt 1.7 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.vtt 1.6 kB
  • 19. Python - Basic Python Syntax/3. The Double Equality Sign.vtt 1.6 kB
  • 37. Deep Learning - TensorFlow Introduction/9. Basic NN Example with TF Exercises.html 1.6 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.vtt 1.5 kB
  • 19. Python - Basic Python Syntax/7. Add Comments.vtt 1.5 kB
  • 19. Python - Basic Python Syntax/10. Indexing Elements.vtt 1.5 kB
  • 42. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.vtt 1.5 kB
  • 27. Advanced Statistical Methods - Linear regression/5. Geometrical Representation of the Linear Regression Model.vtt 1.5 kB
  • 12. Statistics - Inferential Statistics Fundamentals/1. Introduction.vtt 1.5 kB
  • 29. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.vtt 1.5 kB
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5. Basic NN Example Exercises.html 1.4 kB
  • 27. Advanced Statistical Methods - Linear regression/10. Using Seaborn for Graphs.vtt 1.3 kB
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/29. EXERCISE - Removing the Date Column.html 1.2 kB
  • 19. Python - Basic Python Syntax/5. How to Reassign Values.vtt 1.2 kB
  • 25. Python - Advanced Python Tools/3. Modules and Packages.vtt 1.2 kB
  • 22. Python - Python Functions/6. Functions Containing a Few Arguments.vtt 1.2 kB
  • 45. Deep Learning - Conclusion/4. DeepMind and Deep Learning.html 1.1 kB
  • 19. Python - Basic Python Syntax/9. Understanding Line Continuation.vtt 1.0 kB
  • 50. Case Study - Loading the 'absenteeism_module'/4. Exporting the Obtained Data Set as a .csv.html 998 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/8. EXERCISE - Dropping a Column from a DataFrame in Python.html 866 Bytes
  • 1. Part 1 Introduction/3. Download All Resources.html 730 Bytes
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/5. EXERCISE - Transportation Expense vs Probability.html 561 Bytes
  • 38. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/9. Backpropagation - A Peek into the Mathematics of Optimization.html 539 Bytes
  • 10. Statistics - Descriptive Statistics/23. Variance Exercise.html 522 Bytes
  • 50. Case Study - Loading the 'absenteeism_module'/1. Are You Sure You're All Set.html 519 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html 462 Bytes
  • 45. Deep Learning - Conclusion/7. Download All Resources.html 458 Bytes
  • 44. Deep Learning - Business Case Example/12. Business Case Final Exercise.html 439 Bytes
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/3. EXERCISE - Reasons vs Probability.html 401 Bytes
  • 51. Case Study - Analyzing the Predicted Outputs in Tableau/1. EXERCISE - Age vs Probability.html 385 Bytes
  • 44. Deep Learning - Business Case Example/5. Business Case Preprocessing Exercise.html 383 Bytes
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15. EXERCISE - Saving the Model (and Scaler).html 284 Bytes
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11.1 Logistic Regression prior to Backward Elimination.html 226 Bytes
  • 33. Part 5 Mathematics/12.1 Errors when Adding Matrices Python Notebook.html 220 Bytes
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/9.1 Logistic Regression prior to Custom Scaler.html 219 Bytes
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15.2 Logistic Regression with Comments.html 210 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/15.3 EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 204 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/15.4 EXERCISE Species Segmentation with Cluster Analysis (Part 2) - Solution.html 204 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/14.1 EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 203 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/14.2 EXERCISE Species Segmentation with Cluster Analysis (Part 1) - Solution.html 203 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/11.1 Binary Predictors in a Logistic Regression - Exercise.html 202 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/11.3 Binary Predictors in a Logistic Regression - Solution.html 202 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/8.1 Understanding Logistic Regression Tables - Exercise.html 200 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/8.3 Understanding Logistic Regression Tables - Solution.html 200 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/13.1 Calculating the Accuracy of the Model - Exercise.html 197 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/13.2 Calculating the Accuracy of the Model - Solution.html 197 Bytes
  • 49. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15.1 Logistic Regression.html 196 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/7.1 How to Choose the Number of Clusters - Solution.html 191 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/7.2 How to Choose the Number of Clusters - Exercise.html 191 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/5.1 Building a Logistic Regression - Solution.html 190 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/5.2 Building a Logistic Regression - Exercise.html 190 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/18. EXERCISE - Using .concat() in Python.html 189 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/29.2 Removing the “Date” Column.html 188 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/3.2 A Simple Example of Clustering - Solution.html 185 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/3.3 A Simple Example of Clustering - Exercise.html 185 Bytes
  • 50. Case Study - Loading the 'absenteeism_module'/4.1 Deploying the ‘absenteeism_module.html 185 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/5.2 Clustering Categorical Data - Solution.html 182 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/5.3 Clustering Categorical Data - Exercise.html 182 Bytes
  • 33. Part 5 Mathematics/7.1 Arrays in Python Notebook.html 181 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/23.1 Creating Checkpoints.html 181 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/29.1 Preprocessing.html 181 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/16.3 Testing the Model - Exercise.html 178 Bytes
  • 33. Part 5 Mathematics/10.1 Addition and Subtraction of Matrices Python Notebook.html 178 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/16.4 Testing the Model - Solution.html 177 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.5 TensorFlow MNIST '5. Activation Functions (Part 2)' Solution.html 172 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.8 TensorFlow MNIST '4. Activation Functions (Part 1)' Solution.html 172 Bytes
  • 33. Part 5 Mathematics/15.1 Dot Product of Matrices Python Notebook.html 171 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/32.2 Exercises and solutions.html 170 Bytes
  • 33. Part 5 Mathematics/13.1 Transpose of a Matrix Python Notebook.html 167 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html 167 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.6 TensorFlow MNIST '8. Learning Rate (Part 1)' Solution.html 165 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.9 TensorFlow MNIST '9. Learning Rate (Part 2)' Solution.html 165 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.2 Basic NN Example with TensorFlow Exercise 2.1 Solution.html 162 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.5 Basic NN Example with TensorFlow Exercise 2.3 Solution.html 162 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.6 Basic NN Example with TensorFlow Exercise 2.2 Solution.html 162 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.8 Basic NN Example with TensorFlow Exercise 2.4 Solution.html 162 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.1 TensorFlow MNIST 'Time' Solution.html 162 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.3 TensorFlow MNIST '7. Batch size (Part 2)' Solution.html 162 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.7 TensorFlow MNIST '6. Batch size (Part 1)' Solution.html 162 Bytes
  • 10. Statistics - Descriptive Statistics/12. The Histogram.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/15. Cross Tables and Scatter Plots.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/2. Types of Data.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/20. Skewness.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/25. Standard Deviation.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/28. Covariance.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/31. Correlation.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/4. Levels of Measurement.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/6. Categorical Variables - Visualization Techniques.html 161 Bytes
  • 10. Statistics - Descriptive Statistics/9. Numerical Variables - Frequency Distribution Table.html 161 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/10. Central Limit Theorem.html 161 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/12. Standard Error.html 161 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/14. Estimators and Estimates.html 161 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/3. What is a Distribution.html 161 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/5. The Normal Distribution.html 161 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/7. The Standard Normal Distribution.html 161 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/11. Margin of Error.html 161 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/2. What are Confidence Intervals.html 161 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/7. Student's T Distribution.html 161 Bytes
  • 15. Statistics - Hypothesis Testing/11. p-value.html 161 Bytes
  • 15. Statistics - Hypothesis Testing/19. Test for the mean. Independent samples (Part 2).html 161 Bytes
  • 15. Statistics - Hypothesis Testing/3. Null vs Alternative Hypothesis.html 161 Bytes
  • 15. Statistics - Hypothesis Testing/5. Rejection Region and Significance Level.html 161 Bytes
  • 15. Statistics - Hypothesis Testing/7. Type I Error and Type II Error.html 161 Bytes
  • 17. Part 3 Introduction to Python/10. Jupyter's Interface.html 161 Bytes
  • 17. Part 3 Introduction to Python/2. Introduction to Programming.html 161 Bytes
  • 17. Part 3 Introduction to Python/4. Why Python.html 161 Bytes
  • 17. Part 3 Introduction to Python/6. Why Jupyter.html 161 Bytes
  • 18. Python - Variables and Data Types/2. Variables.html 161 Bytes
  • 18. Python - Variables and Data Types/4. Numbers and Boolean Values in Python.html 161 Bytes
  • 18. Python - Variables and Data Types/6. Python Strings.html 161 Bytes
  • 19. Python - Basic Python Syntax/11. Indexing Elements.html 161 Bytes
  • 19. Python - Basic Python Syntax/13. Structuring with Indentation.html 161 Bytes
  • 19. Python - Basic Python Syntax/2. Using Arithmetic Operators in Python.html 161 Bytes
  • 19. Python - Basic Python Syntax/4. The Double Equality Sign.html 161 Bytes
  • 19. Python - Basic Python Syntax/6. How to Reassign Values.html 161 Bytes
  • 19. Python - Basic Python Syntax/8. Add Comments.html 161 Bytes
  • 2. The Field of Data Science - The Various Data Science Disciplines/10. A Breakdown of our Data Science Infographic.html 161 Bytes
  • 2. The Field of Data Science - The Various Data Science Disciplines/2. Data Science and Business Buzzwords Why are there so many.html 161 Bytes
  • 2. The Field of Data Science - The Various Data Science Disciplines/4. What is the difference between Analysis and Analytics.html 161 Bytes
  • 2. The Field of Data Science - The Various Data Science Disciplines/6. Business Analytics, Data Analytics, and Data Science An Introduction.html 161 Bytes
  • 2. The Field of Data Science - The Various Data Science Disciplines/8. Continuing with BI, ML, and AI.html 161 Bytes
  • 20. Python - Other Python Operators/2. Comparison Operators.html 161 Bytes
  • 20. Python - Other Python Operators/4. Logical and Identity Operators.html 161 Bytes
  • 21. Python - Conditional Statements/2. The IF Statement.html 161 Bytes
  • 21. Python - Conditional Statements/6. A Note on Boolean Values.html 161 Bytes
  • 22. Python - Python Functions/8. Python Functions.html 161 Bytes
  • 23. Python - Sequences/2. Lists.html 161 Bytes
  • 23. Python - Sequences/4. Using Methods.html 161 Bytes
  • 23. Python - Sequences/8. Dictionaries.html 161 Bytes
  • 24. Python - Iterations/2. For Loops.html 161 Bytes
  • 24. Python - Iterations/5. Lists with the range() Function.html 161 Bytes
  • 25. Python - Advanced Python Tools/2. Object Oriented Programming.html 161 Bytes
  • 25. Python - Advanced Python Tools/4. Modules and Packages.html 161 Bytes
  • 25. Python - Advanced Python Tools/6. What is the Standard Library.html 161 Bytes
  • 25. Python - Advanced Python Tools/8. Importing Modules in Python.html 161 Bytes
  • 26. Part 4 Advanced Statistical Methods in Python/2. Introduction to Regression Analysis.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/12. How to Interpret the Regression Table.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/14. Decomposition of Variability.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/16. What is the OLS.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/18. R-Squared.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/2. The Linear Regression Model.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/4. Correlation vs Regression.html 161 Bytes
  • 27. Advanced Statistical Methods - Linear regression/6. Geometrical Representation of the Linear Regression Model.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/10. A1 Linearity.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/12. A2 No Endogeneity.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/15. A4 No autocorrelation.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/17. A5 No Multicollinearity.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/2. Multiple Linear Regression.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/4. Adjusted R-Squared.html 161 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/8. OLS Assumptions.html 161 Bytes
  • 3. The Field of Data Science - Connecting the Data Science Disciplines/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html 161 Bytes
  • 33. Part 5 Mathematics/11. Addition and Subtraction of Matrices.html 161 Bytes
  • 33. Part 5 Mathematics/2. What is a Matrix.html 161 Bytes
  • 33. Part 5 Mathematics/4. Scalars and Vectors.html 161 Bytes
  • 33. Part 5 Mathematics/6. Linear Algebra and Geometry.html 161 Bytes
  • 33. Part 5 Mathematics/9. What is a Tensor.html 161 Bytes
  • 34. Part 6 Deep Learning/2. What is Machine Learning.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/10. The Linear Model with Multiple Inputs.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/12. The Linear model with Multiple Inputs and Multiple Outputs.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/14. Graphical Representation of Simple Neural Networks.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/16. What is the Objective Function.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/18. Common Objective Functions L2-norm Loss.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/2. Introduction to Neural Networks.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/20. Common Objective Functions Cross-Entropy Loss.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/22. Optimization Algorithm 1-Parameter Gradient Descent.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/24. Optimization Algorithm n-Parameter Gradient Descent.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/4. Training the Model.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/6. Types of Machine Learning.html 161 Bytes
  • 35. Deep Learning - Introduction to Neural Networks/8. The Linear Model.html 161 Bytes
  • 4. The Field of Data Science - The Benefits of Each Discipline/2. The Reason behind these Disciplines.html 161 Bytes
  • 46. Software Integration/10. Software Integration - Explained.html 161 Bytes
  • 46. Software Integration/2. What are Data, Servers, Clients, Requests, and Responses.html 161 Bytes
  • 46. Software Integration/4. What are Data Connectivity, APIs, and Endpoints.html 161 Bytes
  • 46. Software Integration/6. Taking a Closer Look at APIs.html 161 Bytes
  • 46. Software Integration/8. Communication between Software Products through Text Files.html 161 Bytes
  • 47. Case Study - What's Next in the Course/4. Introducing the Data Set.html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/11. Techniques for Working with Traditional Methods.html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/14. Machine Learning (ML) Techniques.html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/16. Types of Machine Learning.html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/18. Real Life Examples of Machine Learning (ML).html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/2. Techniques for Working with Traditional Data.html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/5. Techniques for Working with Big Data.html 161 Bytes
  • 5. The Field of Data Science - Popular Data Science Techniques/8. Business Intelligence (BI) Techniques.html 161 Bytes
  • 6. The Field of Data Science - Popular Data Science Tools/2. Necessary Programming Languages and Software Used in Data Science.html 161 Bytes
  • 7. The Field of Data Science - Careers in Data Science/2. Finding the Job - What to Expect and What to Look for.html 161 Bytes
  • 8. The Field of Data Science - Debunking Common Misconceptions/2. Debunking Common Misconceptions.html 161 Bytes
  • 9. Part 2 Statistics/2. Population and Sample.html 161 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.3 Basic NN Example with TensorFlow Exercise 4 Solution.html 160 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.4 Basic NN Example with TensorFlow Exercise 1 Solution.html 160 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.7 Basic NN Example with TensorFlow Exercise 3 Solution.html 160 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.4 TensorFlow MNIST '3. Width and Depth' Solution.html 160 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/3.1 TensorFlow MNIST Part 1 with Comments.html 159 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/4.1 TensorFlow MNIST Part 2 with Comments.html 159 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/5.1 TensorFlow MNIST Part 3 with Comments.html 159 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/6.1 TensorFlow MNIST Part 4 with Comments.html 159 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/7.1 TensorFlow MNIST Part 5 with Comments.html 159 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/8.1 TensorFlow MNIST Part 6 with Comments.html 159 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.10 TensorFlow MNIST 'Around 98% Accuracy' Solution.html 157 Bytes
  • 37. Deep Learning - TensorFlow Introduction/8.1 Basic NN Example with TensorFlow (Complete).html 156 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/32.1 Preprocessing.html 156 Bytes
  • 33. Part 5 Mathematics/14.1 Dot Product Python Notebook.html 154 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.1 Basic NN Example Exercise 3a Solution.html 154 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.10 Basic NN Example Exercise 3b Solution.html 154 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.3 Basic NN Example Exercise 3d Solution.html 154 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.8 Basic NN Example Exercise 3c Solution.html 154 Bytes
  • 37. Deep Learning - TensorFlow Introduction/5.1 Basic NN Example with TensorFlow (Part 1).html 154 Bytes
  • 37. Deep Learning - TensorFlow Introduction/6.1 Basic NN Example with TensorFlow (Part 2).html 154 Bytes
  • 37. Deep Learning - TensorFlow Introduction/7.1 Basic NN Example with TensorFlow (Part 3).html 154 Bytes
  • 37. Deep Learning - TensorFlow Introduction/9.1 Basic NN Example with TensorFlow (All Exercises).html 154 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/9.1 TensorFlow MNIST Complete Code with Comments.html 152 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.11 TensorFlow MNIST '1. Width' Solution.html 150 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/11.2 TensorFlow MNIST '2. Depth' Solution.html 150 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.2 Basic NN Example Exercise 2 Solution.html 149 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.4 Basic NN Example Exercise 5 Solution.html 149 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.5 Basic NN Example Exercise 4 Solution.html 149 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.7 Basic NN Example Exercise 1 Solution.html 149 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.9 Basic NN Example Exercise 6 Solution.html 149 Bytes
  • 33. Part 5 Mathematics/8.1 Tensors Notebook.html 148 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4.1 Basic NN Example (Part 4).html 145 Bytes
  • 43. Deep Learning - Classifying on the MNIST Dataset/10.1 TensorFlow MNIST All Exercises.html 144 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.6 Basic NN Example (All Exercises).html 143 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/19. SOLUTION - Using .concat() in Python.html 142 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html 137 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Bais NN Example Part 1.html 136 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2.1 Basic NN Example (Part 2).html 136 Bytes
  • 36. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3.1 Basic NN Example (Part 3).html 136 Bytes
  • 18. Python - Variables and Data Types/1.2 Variables - Resources.html 134 Bytes
  • 18. Python - Variables and Data Types/3.1 Numbers and Boolean Values - Resources.html 134 Bytes
  • 18. Python - Variables and Data Types/5.1 Strings - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/1.1 Arithmetic Operators - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/10.1 Indexing Elements - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/12.1 Structure Your Code with Indentation - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/3.1 The Double Equality Sign - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/5.1 Reassign Values - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/7.1 Add Comments - Resources.html 134 Bytes
  • 19. Python - Basic Python Syntax/9.1 Line Continuation - Resources.html 134 Bytes
  • 20. Python - Other Python Operators/1.1 Comparison Operators - Resources.html 134 Bytes
  • 20. Python - Other Python Operators/3.1 Logical and Identity Operators - Resources.html 134 Bytes
  • 21. Python - Conditional Statements/1.1 Introduction to the If Statement - Resources.html 134 Bytes
  • 21. Python - Conditional Statements/3.1 Add an Else Statement - Resources.html 134 Bytes
  • 21. Python - Conditional Statements/4.1 Else if, for Brief - Elif - Resources.html 134 Bytes
  • 21. Python - Conditional Statements/5.1 A Note on Boolean Values - Resources.html 134 Bytes
  • 22. Python - Python Functions/1.1 Defining a Function in Python - Resources.html 134 Bytes
  • 22. Python - Python Functions/2.1 Creating a Function with a Parameter - Resources.html 134 Bytes
  • 22. Python - Python Functions/3.1 Another Way to Define a Function - Resources.html 134 Bytes
  • 22. Python - Python Functions/4.1 Using a Function in Another Function - Resources.html 134 Bytes
  • 22. Python - Python Functions/5.1 Combining Conditional Statements and Functions - Resources.html 134 Bytes
  • 22. Python - Python Functions/6.1 Creating Functions Containing a Few Arguments - Resources.html 134 Bytes
  • 22. Python - Python Functions/7.1 Notable Built-In Functions in Python - Resources.html 134 Bytes
  • 23. Python - Sequences/1.1 Lists - Resources.html 134 Bytes
  • 23. Python - Sequences/3.1 Help Yourself with Methods - Resources.html 134 Bytes
  • 23. Python - Sequences/5.1 List Slicing - Resources.html 134 Bytes
  • 23. Python - Sequences/6.1 Tuples - Resources.html 134 Bytes
  • 23. Python - Sequences/7.1 Dictionaries - Resources.html 134 Bytes
  • 24. Python - Iterations/1.1 For Loops - Resources.html 134 Bytes
  • 24. Python - Iterations/3.1 While Loops and Incrementing - Resources.html 134 Bytes
  • 24. Python - Iterations/4.1 Create Lists with the range() Function - Resources.html 134 Bytes
  • 24. Python - Iterations/6.1 Use Conditional Statements and Loops Together - Resources.html 134 Bytes
  • 24. Python - Iterations/7.1 All In - Conditional Statements, Functions, and Loops - Resources.html 134 Bytes
  • 24. Python - Iterations/8.1 Iterating over Dictionaries - Resources.html 134 Bytes
  • 27. Advanced Statistical Methods - Linear regression/8.1 Simple linear regression - Lecture.html 134 Bytes
  • 27. Advanced Statistical Methods - Linear regression/8.2 Simple linear regression - Exercise.html 134 Bytes
  • 27. Advanced Statistical Methods - Linear regression/9.1 Simple Linear Regression Exercise.html 134 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/18.1 Dummies - Lecture.html 134 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/19.1 Dummy variables Exercise.html 134 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/20.1 Making predictions - Lecture.html 134 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/3.1 Multiple linear regression - Lecture.html 134 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/5.1 Multiple Linear Regression Exercise.html 134 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/10.1 Binary predictors.html 134 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/12.1 Accuracy.html 134 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/15.1 Test dataset.html 134 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/2.1 Simple logistic regression example.html 134 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/4.1 Building a logistic regression.html 134 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/11.1 Market segmentation example.html 134 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/12.1 Market segmentation example (Part 2).html 134 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/2.1 Country clusters.html 134 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/4.1 Clustering categorical data.html 134 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/6.1 Selecting the number of clusters.html 134 Bytes
  • 32. Advanced Statistical Methods - Other Types of Clustering/3.1 Heatmaps.html 134 Bytes
  • 44. Deep Learning - Business Case Example/11.1 TensorFlow Business Case Homework.html 134 Bytes
  • 44. Deep Learning - Business Case Example/12.1 TensorFlow Business Case Homework.html 134 Bytes
  • 44. Deep Learning - Business Case Example/4.1 Audiobooks Preprocessing.html 134 Bytes
  • 44. Deep Learning - Business Case Example/5.1 Preprocessing Exercise.html 134 Bytes
  • 44. Deep Learning - Business Case Example/6.1 Creating a Data Provider (Class).html 134 Bytes
  • 44. Deep Learning - Business Case Example/7.1 TensorFlow Business Case Model Outline.html 134 Bytes
  • 44. Deep Learning - Business Case Example/8.1 TensorFlow Business Case Optimization.html 134 Bytes
  • 44. Deep Learning - Business Case Example/9.1 TensorFlow Business Case Interpretation.html 134 Bytes
  • 50. Case Study - Loading the 'absenteeism_module'/1.1 5 Files Needed to Deploy the Model.html 134 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/12. EXERCISE - Obtaining Dummies from a Single Feature.html 129 Bytes
  • [FreeCourseLab.com].url 126 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html 117 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/13. SOLUTION - Obtaining Dummies from a Single Feature.html 116 Bytes
  • 48. Case Study - Preprocessing the 'Absenteeism_data'/9. SOLUTION - Dropping a Column from a DataFrame in Python.html 113 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/11. Binary Predictors in a Logistic Regression - Exercise.html 87 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/13. Calculating the Accuracy of the Model.html 87 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/16. Testing the Model - Exercise.html 87 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/5. Building a Logistic Regression - Exercise.html 87 Bytes
  • 29. Advanced Statistical Methods - Logistic Regression/8. Understanding Logistic Regression Tables - Exercise.html 87 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html 87 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html 87 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/3. A Simple Example of Clustering - Exercise.html 87 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/5. Clustering Categorical Data.html 87 Bytes
  • 31. Advanced Statistical Methods - K-Means Clustering/7. How to Choose the Number of Clusters - Exercise.html 87 Bytes
  • 10. Statistics - Descriptive Statistics/10. Numerical Variables Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/13. Histogram Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/16. Cross Tables and Scatter Plots Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/18. Mean, Median and Mode Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/21. Skewness Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/26. Standard Deviation and Coefficient of Variation Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/29. Covariance Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/32. Correlation Coefficient Exercise.html 81 Bytes
  • 10. Statistics - Descriptive Statistics/7. Categorical Variables Exercise.html 81 Bytes
  • 11. Statistics - Practical Example Descriptive Statistics/2. Practical Example Descriptive Statistics Exercise.html 81 Bytes
  • 12. Statistics - Inferential Statistics Fundamentals/8. The Standard Normal Distribution Exercise.html 81 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Dependent samples Exercise.html 81 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent samples (Part 1) Exercise.html 81 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/17. Confidence intervals. Two means. Independent samples (Part 2) Exercise.html 81 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/4. Confidence Intervals; Population Variance Known; z-score; Exercise.html 81 Bytes
  • 13. Statistics - Inferential Statistics Confidence Intervals/9. Confidence Intervals; Population Variance Unknown; t-score; Exercise.html 81 Bytes
  • 14. Statistics - Practical Example Inferential Statistics/2. Practical Example Inferential Statistics Exercise.html 81 Bytes
  • 15. Statistics - Hypothesis Testing/13. Test for the Mean. Population Variance Unknown Exercise.html 81 Bytes
  • 15. Statistics - Hypothesis Testing/15. Test for the Mean. Dependent Samples Exercise.html 81 Bytes
  • 15. Statistics - Hypothesis Testing/17. Test for the mean. Independent samples (Part 1). Exercise.html 81 Bytes
  • 15. Statistics - Hypothesis Testing/20. Test for the mean. Independent samples (Part 2) Exercise.html 81 Bytes
  • 15. Statistics - Hypothesis Testing/9. Test for the Mean. Population Variance Known Exercise.html 81 Bytes
  • 16. Statistics - Practical Example Hypothesis Testing/2. Practical Example Hypothesis Testing Exercise.html 81 Bytes
  • 27. Advanced Statistical Methods - Linear regression/9. First Regression in Python Exercise.html 76 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/19. Dealing with Categorical Data - Dummy Variables.html 76 Bytes
  • 28. Advanced Statistical Methods - Multiple Linear Regression/5. Multiple Linear Regression Exercise.html 76 Bytes

随机展示

相关说明

本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!