搜索
[FreeCoursesOnline.Me] [UDACITY] Deep Learning Nanodegree Program - [FCO]
磁力链接/BT种子名称
[FreeCoursesOnline.Me] [UDACITY] Deep Learning Nanodegree Program - [FCO]
磁力链接/BT种子简介
种子哈希:
f4afbac627a859c20f1e7e2b11b2d7789d3ed36c
文件大小:
3.33G
已经下载:
2671
次
下载速度:
极快
收录时间:
2021-03-19
最近下载:
2024-12-25
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:F4AFBAC627A859C20F1E7E2B11B2D7789D3ED36C
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
少女初夜
萝莉岛
最近搜索
+多道具
the nice
banoo audio
koyuki+shinjyo
aayun
泰国+无码
mst3k
包皮视频
小萝莉写真
晓晓小
2021-7-7
萝莉
svsha-008
假面骑士剑中文字幕
the+band
2018 2160p ita
萝莉+母狗
轮草熟女
臀型
潮敏感
魅魔文
the darkness
高級妻
the nurse
hollyrandall imageset
各自带漂亮女友
urami
乐橙4月最新
国模 笑笑
157
文件列表
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.mp4
57.2 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.mp4
52.7 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.mp4
50.7 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.mp4
45.7 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.mp4
41.3 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.mp4
41.0 MB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4
40.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4
38.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4
37.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4
36.5 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4
35.3 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.mp4
35.0 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.mp4
34.8 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.mp4
34.1 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.mp4
31.9 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.mp4
31.6 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.mp4
30.3 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.mp4
30.1 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.mp4
28.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.mp4
27.9 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.mp4
27.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4
27.0 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.mp4
26.9 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.mp4
26.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4
25.4 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.mp4
24.9 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.mp4
24.5 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.mp4
24.2 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.mp4
23.4 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4
23.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.mp4
23.1 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.mp4
23.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4
22.6 MB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.mp4
22.6 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4
22.4 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.mp4
22.1 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.mp4
22.0 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.mp4
22.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4
21.9 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.mp4
21.7 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4
21.7 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.mp4
21.2 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.mp4
21.1 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.mp4
21.0 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.mp4
20.8 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4
20.6 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.mp4
20.0 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.mp4
19.8 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4
19.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4
19.0 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.mp4
18.8 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4
18.6 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.mp4
18.6 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.mp4
18.5 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4
18.3 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.mp4
18.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4
18.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4
18.1 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.mp4
17.8 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.mp4
17.7 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.mp4
17.5 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.mp4
17.3 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.mp4
16.8 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.mp4
16.7 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.mp4
16.6 MB
Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4
16.4 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.mp4
16.4 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4
15.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.mp4
15.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.mp4
15.0 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4
15.0 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.mp4
14.8 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4
14.3 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4
14.1 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4
14.0 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.mp4
13.9 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4
13.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4
13.6 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4
13.4 MB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4
13.3 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4
13.3 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.mp4
13.3 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.mp4
13.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4
13.1 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.mp4
12.6 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.mp4
12.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.mp4
12.2 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4
11.8 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.mp4
11.8 MB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.mp4
11.6 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.mp4
11.6 MB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.mp4
11.3 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4
11.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4
11.2 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4
11.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4
11.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4
10.9 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.mp4
10.9 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4
10.9 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.mp4
10.8 MB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.mp4
10.8 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4
10.8 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4
10.8 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.mp4
10.7 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.mp4
10.6 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4
10.6 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4
10.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.mp4
10.4 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.mp4
10.4 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.mp4
10.3 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.mp4
10.2 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.mp4
10.1 MB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4
10.1 MB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.mp4
10.0 MB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.mp4
9.9 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.mp4
9.7 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.mp4
9.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.mp4
9.6 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.mp4
9.5 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4
9.5 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4
9.5 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.mp4
9.4 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.mp4
9.3 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.mp4
9.3 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.mp4
9.3 MB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.mp4
9.2 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4
9.1 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4
9.1 MB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4
9.0 MB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.mp4
8.9 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.mp4
8.8 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.mp4
8.7 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.mp4
8.7 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.mp4
8.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.mp4
8.6 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.mp4
8.5 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.mp4
8.5 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4
8.5 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.mp4
8.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4
8.4 MB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.mp4
8.4 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4
8.4 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4
8.4 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.mp4
8.2 MB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.mp4
8.1 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.mp4
8.1 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.mp4
8.0 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4
8.0 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4
7.9 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/chess-game.jpg
7.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.mp4
7.8 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.mp4
7.7 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4
7.7 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.mp4
7.7 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.mp4
7.6 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.mp4
7.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.mp4
7.6 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4
7.5 MB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.mp4
7.5 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.mp4
7.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.mp4
7.4 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.mp4
7.3 MB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.mp4
7.3 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.mp4
7.3 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.mp4
7.2 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4
7.2 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4
7.2 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.mp4
7.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.mp4
7.0 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.mp4
7.0 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.mp4
7.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.mp4
6.9 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.mp4
6.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
6.7 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.mp4
6.6 MB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.mp4
6.5 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.mp4
6.5 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4
6.5 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.mp4
6.5 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.mp4
6.4 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4
6.4 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.mp4
6.3 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4
6.2 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4
6.2 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.mp4
6.1 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.mp4
6.1 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4
6.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4
5.8 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.mp4
5.8 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.mp4
5.7 MB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.mp4
5.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4
5.7 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.mp4
5.7 MB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/img/carnd.jpg
5.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.mp4
5.5 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4
5.5 MB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.mp4
5.4 MB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.mp4
5.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.mp4
5.3 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
5.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
5.3 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.mp4
5.3 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.mp4
5.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.2 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.mp4
5.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.mp4
5.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4
5.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.mp4
5.0 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.mp4
4.9 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.mp4
4.9 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.mp4
4.6 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4
4.6 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.mp4
4.6 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.mp4
4.5 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.mp4
4.5 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.mp4
4.5 MB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4
4.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.mp4
4.4 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4
4.4 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.mp4
4.4 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.mp4
4.4 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.mp4
4.3 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.mp4
4.3 MB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4
4.3 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.mp4
4.3 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4
4.2 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.mp4
4.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.mp4
4.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.1 MB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4
4.1 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.mp4
4.1 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.mp4
4.1 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.mp4
4.0 MB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.mp4
3.8 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.mp4
3.7 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png
3.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4
3.6 MB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.mp4
3.6 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.mp4
3.6 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4
3.6 MB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4
3.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.mp4
3.4 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.mp4
3.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.mp4
3.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.mp4
3.3 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4
3.2 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png
3.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.mp4
3.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.mp4
3.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4
3.1 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.mp4
3.0 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png
3.0 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.mp4
3.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.mp4
3.0 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4
3.0 MB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4
3.0 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4
3.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-agent-monitor-main.gif
2.9 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.mp4
2.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.mp4
2.8 MB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.mp4
2.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.mp4
2.7 MB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4
2.7 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4
2.6 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-1.29.13-pm.png
2.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.mp4
2.5 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.mp4
2.5 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.mp4
2.5 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4
2.4 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4
2.4 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.mp4
2.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.mp4
2.3 MB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.mp4
2.3 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.mp4
2.3 MB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4
2.3 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.mp4
2.3 MB
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.mp4
2.3 MB
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.mp4
2.3 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4
2.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.mp4
2.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4
2.2 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.mp4
2.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4
2.1 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.mp4
2.1 MB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/run-main.gif
2.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.mp4
1.9 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/skin-disease-classes.png
1.7 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.mp4
1.7 MB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.mp4
1.7 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.mp4
1.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4
1.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4
1.7 MB
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.mp4
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/lesions.png
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.mp4
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.mp4
1.6 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4
1.6 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/frozen-lake-6.jpg
1.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.mp4
1.6 MB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4
1.6 MB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4
1.5 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.mp4
1.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.mp4
1.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4
1.4 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.mp4
1.3 MB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/arch.png
1.3 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.mp4
1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4
1.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.mp4
1.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.31.11-pm.png
1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.mp4
1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4
1.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-11-at-2.04.14-pm.png
1.2 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4
1.2 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.mp4
1.1 MB
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.mp4
1.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-10.43.49-pm.png
1.1 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.mp4
1.1 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.mp4
1.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.12.31-am.png
1.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.16.19-am.png
1.1 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.1 MB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4
1.0 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/statevalue.png
1.0 MB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4
1.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.mp4
1.0 MB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.mp4
1.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.14.30-am.png
1.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.mp4
969.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4
949.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-10-at-9.12.16-pm.png
919.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/nature.png
914.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4
909.9 kB
img/dl-classroom-1200x900.jpg
896.3 kB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4
894.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.13-pm.png
892.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4
883.2 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/chi-waves.png
843.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4
839.5 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-terminal.gif
838.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.52-pm.png
826.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.49.20-pm.png
776.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-4.58.58-pm.png
733.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-2.04.54-pm.png
713.1 kB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4
709.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.mp4
693.2 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.mp4
683.2 kB
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4
676.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/actionvalue.png
643.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-24-at-4.28.04-pm.png
637.6 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/go.jpg
629.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 01-Module 01-Lesson 03_Anaconda/media/conda_default_install.mp4
609.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-3.png
589.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.mp4
587.6 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/submit-workspace.png
559.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.51.44-pm.png
531.3 kB
Part 08-Module 01-Lesson 02_Regression/img/house.png
503.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-21-at-15.43.05.png
493.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.10.02-pm.png
489.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/examples.jpg
480.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/threshold.png
479.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-08-31-at-3.27.10-pm.png
474.2 kB
assets/img/udacimak.png
472.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/quadcopter.png
466.6 kB
Part 01-Module 01-Lesson 03_Anaconda/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.38.24-am.png
451.5 kB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-search.png
441.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/study-group.png
425.2 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.55.20-am.png
424.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-2.18.38-pm.png
415.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Images-1GdiN5Wc8LA.mp4
404.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4
404.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.22-am.png
395.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/value-iteration.png
390.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.46.35-pm.png
375.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-action.png
372.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/review-example.png
371.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.27.51-pm.png
371.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-1.40.14-pm.png
369.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-state.png
356.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.34.41-pm.png
355.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/generated-mnist.png
354.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.08.28-pm.png
342.6 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-12-17-at-12.49.34-pm.png
340.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/Markdown+cells.mp4
338.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/boston-back-bay-reflection.jpg
325.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-08-at-3.43.34-pm.png
324.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/td-prediction.png
318.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/confusion-matrix.png
318.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/img/atari-network.png
317.4 kB
Part 02-Module 01-Lesson 07_Keras/img/all-ranks.png
315.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2017-01-26-at-2.51.02-pm.png
309.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-26-at-19.28.34.png
304.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-glie.png
304.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsa.png
293.7 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/layers.png
293.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.38.03-am.png
282.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-constant-a.png
281.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-iter.png
280.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-5.01.26-pm.png
278.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-10.54.50-am.png
276.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsamax.png
270.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/policy-eval.png
265.9 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-11.03.16-pm.png
265.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png
265.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2018-06-12-at-5.07.10-pm.png
263.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png
261.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/expected-sarsa.png
260.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png
257.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/precision-quiz.png
256.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg
252.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.23.49-pm.png
252.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png
247.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png
247.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/iteration.png
247.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.49.43-pm.png
239.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png
238.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png
238.1 kB
assets/js/katex.min.js
236.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-2.jpeg
236.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-1.jpeg
236.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.58.01-pm.png
235.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png
234.4 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/recall-quiz.png
233.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png
233.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.38.51-pm.png
230.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-eval.png
230.6 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/karpathy-network.png
227.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif
227.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-4.22.09-pm.png
224.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png
224.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/notebook+interface.mp4
220.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/multi-layer.png
219.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.50-pm.png
215.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 07_Keras/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/meme.png
214.1 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/meme.png
214.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/meme.png
214.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/exploration-vs.-exploitation.png
209.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.30-pm.png
208.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-21-at-12.20.30-pm.png
208.0 kB
Part 01-Module 01-Lesson 03_Anaconda/media/conda_install.mp4
206.6 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 01_Recurrent Neural Networks/data.json
204.0 kB
Part 08-Module 01-Lesson 02_Regression/img/batch-stochastic.png
201.6 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-06-13-at-12.58.03-pm.png
201.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/media/monkey-doctor.png
194.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/confusion.png
193.4 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/p2-limit-increase.png
192.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/medical.png
191.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/new-confusion-matrix.png
190.6 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/1omsg2-mkguagky1c64uflw.gif
188.4 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/new-tab.gif
185.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/pup.jpg
185.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.44.20-pm.png
185.3 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/img/screen-shot-2017-11-30-at-1.34.44-pm.png
185.0 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/mat-headshot.png
184.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/img/mat-headshot.png
184.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/mat-headshot.png
184.3 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/img/mat-headshot.png
184.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/mat-headshot.png
184.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/mat-headshot.png
184.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/img/mat-headshot.png
184.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/2-card-21.png
180.1 kB
Part 08-Module 01-Lesson 02_Regression/img/quiz.jpg
178.4 kB
Part 08_Additional Lessons/Module 02_Miniflow/Lesson 01_MiniFlow/data.json
177.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/media/input-to-output-2.mp4
176.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/svhn-examples.png
174.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-5.33.53-pm.png
173.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/command+palette.mp4
173.2 kB
Discuss.FreeTutorials.Us.html
169.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.09.07-pm.png
168.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.14.45-pm.png
167.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/example-neural-network.png
167.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.49.24-pm.png
163.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-12-17-at-9.41.03-am.png
162.0 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/precision-recall.png
160.5 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/rnn.png
159.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sensitivity-specificity.png
158.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.08.03-pm.png
156.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/incremental.png
155.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/est-action.png
154.2 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/email.png
152.1 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/parrot-ar-drone.jpg
150.0 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-submit.png
149.7 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-gpu.png
149.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-10.30.15-am.png
148.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/constant-alpha.png
147.1 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-notebook.png
146.3 kB
assets/css/bootstrap.min.css
140.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curves.png
140.6 kB
Part 08-Module 01-Lesson 02_Regression/img/minibatch.png
140.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-07-19-at-5.39.37-pm.png
134.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-confusion-matrix.png
133.7 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/p2xlarge-limit-request.png
132.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.03.45-pm.png
132.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-6.29.49-pm.png
132.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/img/poker-hand-3-of-a-kind.png
131.7 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/improve.png
127.4 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 01_Introduction to Neural Networks/data.json
127.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png
121.2 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 08_TensorFlow/data.json
117.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/backgammonboard.svg.png
115.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/linear-relationships.png
115.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.00.15-pm.png
112.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.36.39-pm.png
112.3 kB
FreeCoursesOnline.Me.html
110.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-17-at-5.38.55-pm.png
110.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/topological-sort.001.jpeg
109.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/amazonwebservices-logo.svg.png
109.7 kB
Part 08-Module 01-Lesson 02_Regression/img/nn.png
108.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/accuracy-quiz.png
108.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/article-2278590-1792e332000005dc-394-634x615.jpg
105.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.09.13-pm.png
105.1 kB
FreeTutorials.Eu.html
104.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 02_Implementing Gradient Descent/data.json
103.6 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 02_Convolutional Neural Networks/data.json
99.9 kB
Part 01-Module 01-Lesson 03_Anaconda/media/conda_enter.mp4
99.6 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.46.43-pm.png
97.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 04_Dynamic Programming/data.json
96.2 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-menu.png
96.2 kB
Part 02-Module 01-Lesson 07_Keras/img/summary.png
96.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png
94.3 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png
90.0 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/tensorflow.png
87.3 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-new.png
87.3 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-05-at-3.55.40-pm.png
86.7 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-jupyter.png
85.5 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 02_The RL Framework The Problem/data.json
85.5 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 05_Monte Carlo Methods/data.json
84.3 kB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-install.png
83.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.43.36-pm.png
82.8 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.29.14-pm.png
81.2 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png
80.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc.png
80.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-6.02.37-pm.png
80.7 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/data.json
79.8 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/flappy-bird.jpg
78.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/word-embeddings.jpg
76.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-12-at-5.47.45-pm.png
75.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/img/enable-gpu.png
75.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 08_Additional Lessons/Module 01_Regression, Eval/Lesson 02_Regression/data.json
74.0 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png
73.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-5.54.40-pm.png
73.1 kB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-create-env.png
72.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/img/notebook.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.40.57-pm.png
71.3 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/grokking-deep-learning.jpg
71.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/addition-graph.png
70.6 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 08-Module 01-Lesson 02_Regression/img/just-a-2d-reg.png
70.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.41.08-pm.png
70.1 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/img/paper-notes.svg.png
69.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.19-pm.png
68.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.35-pm.png
68.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-11.55.58-am.png
66.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-5.51.40-pm.png
66.1 kB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-env-export.png
65.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/convolution-schematic.gif
65.2 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/convolution-schematic.gif
65.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/pasted-image-at-2016-10-25-01-17-pm.png
64.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/dropout-node.jpeg
64.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/cross-entropy-diagram.png
64.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-16-at-2.40.57-pm.png
64.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.42.56-am.png
62.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-1.48.59-pm.png
62.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.50.40-am.png
62.5 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/convolutional-neural-networks-2.jpg
61.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png
60.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.37.27-am.png
60.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-2.46.11-pm.png
60.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.10.56-pm.png
60.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.45.50-pm.png
59.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/w1-backprop-graph.png
58.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.44.11-pm.png
58.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-10-17-at-11.02.44-am.png
57.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.25.10-pm.png
56.9 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/media/Screen+Shot+2017-01-27+at+11.38.54+AM.png
56.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png
56.4 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 03_The RL Framework The Solution/data.json
56.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.08.59-pm.png
55.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/notmnist.png
55.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/media/nmn.png
55.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.44.15-pm.png
55.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.06.19-pm.png
54.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 04_Jupyter Notebooks/data.json
54.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-9.18.00-pm.png
53.7 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/softmax-input-output.png
53.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.46.12-pm.png
53.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png
53.2 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/img/input-times-weights.png
53.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png
53.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.48.31-pm.png
52.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/w2-backprop-graph.png
51.3 kB
assets/js/bootstrap.min.js
51.0 kB
Part 02-Module 01-Lesson 07_Keras/img/data.png
50.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-4.12.59-pm.png
50.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.58.26-pm.png
50.0 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png
49.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.07.21-pm.png
49.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.42.29-pm.png
49.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/stop.png
48.7 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/screen-shot-2018-04-14-at-3.13.15-pm.png
48.2 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-terminal.png
48.0 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-roc-curve.png
47.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/layer-1-grid.png
46.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.31.41-pm.png
46.0 kB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 01_Welcome to Deep Learning/data.json
45.5 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.46.12-pm.png
45.0 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.21.41-pm.png
44.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neuron.png
44.0 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 06_Temporal-Difference Methods/data.json
43.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.38.11-pm.png
43.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/two-layer-graph.png
43.8 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/faces.png
43.8 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-add-sec-group.png
42.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-3.54.17-pm.png
42.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.26.22-pm.png
42.2 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-environments.png
41.1 kB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 05_Matrix Math and NumPy Refresher/data.json
40.4 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-6.01.16-pm.png
40.1 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png
39.0 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 01_Cloud Computing/data.json
38.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/maxpool.jpeg
38.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-3.38.43-pm.png
37.9 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 06_Sentiment Analysis/data.json
37.9 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/12. Backpropagation.html
36.5 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/grid-layer-1.png
36.1 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-3.53.12-pm.png
35.9 kB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 05_Teach a Quadcopter How to Fly/data.json
35.8 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 03_Anaconda/data.json
34.3 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 07_Keras/data.json
34.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-4.47.47-pm.png
34.1 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.37.22-am.png
34.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.16.55-pm.png
33.3 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curve.png
32.2 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 03_CNNs in TensorFlow/data.json
32.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/relu-network.png
31.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/session.png
31.6 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.10.10-pm.png
31.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-components.png
31.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/pooling-dims.png
29.9 kB
Part 08-Module 01-Lesson 02_Regression/img/lin-reg-no-outliers.png
29.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/conv-dims.png
29.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.27.58-pm.png
28.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-20-at-12.02.06-pm.png
28.3 kB
Part 08-Module 01-Lesson 02_Regression/img/lin-reg-w-outliers.png
28.2 kB
Part 08_Additional Lessons/Module 01_Regression, Eval/Lesson 01_Evaluation Metrics/data.json
27.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.04.21-am.png
27.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-4.34.08-pm.png
27.5 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 04-Module 01-Lesson 04_Hyperparameters/img/f3iwvmld-400x400.jpg
27.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-convergence.gif
27.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.54.48-pm.png
26.8 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html
26.7 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 04_Hyperparameters/data.json
26.6 kB
Part 08-Module 01-Lesson 02_Regression/img/just-a-simple-lin-reg.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-divergence.gif
26.2 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-11.35.38-am.png
25.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/07. Quiz Mini-batch.html
25.8 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/max-pooling.png
25.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.02.16-pm.png
25.8 kB
Part 03-Module 01-Lesson 05_Autoencoders/img/autoencoder-1.png
25.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/weights-0-1-2.png
25.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/tensorflow-825x510.png
25.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.05.00-pm.png
24.9 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.02.19-pm.png
24.8 kB
assets/css/plyr.css
24.2 kB
Part 08-Module 01-Lesson 02_Regression/img/quadraticlinearregression.png
24.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/13. Stochastic Gradient Descent.html
24.0 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-5.14.13-pm.png
23.8 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/launch-instance.png
23.1 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-11.43.26-am.png
23.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/sequence-to-sequence-unrolled-encoder-decoder.png
23.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
assets/css/katex.min.css
22.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/04. Quiz TensorFlow Linear Function.html
21.8 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 02_Long Short-Term Memory Networks (LSTM)/data.json
21.8 kB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 02_Applying Deep Learning/data.json
21.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html
21.3 kB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 01_Generative Adversarial Networks/data.json
21.1 kB
Part 02-Module 01-Lesson 07_Keras/img/student-acceptance.png
21.0 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html
20.9 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/mnist-012.png
20.7 kB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 01_RL in Continuous Spaces/data.json
20.6 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.51.54-pm.png
20.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt
20.3 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 04_GPU Workspaces Demo/data.json
19.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
19.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 02_Deep Q-Learning/data.json
19.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/29. Mini Project Dermatologist AI.html
19.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/14. SGD Solution.html
19.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/07. Linear Transform.html
19.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html
19.2 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.en.vtt
18.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. Backpropagation- Example (part b).html
18.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning.html
18.8 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 03_Training Neural Networks/data.json
18.5 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt
18.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt
18.0 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt
17.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/09. Cost.html
17.5 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. Backpropagation Through Time (part b).html
17.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/15. Exploration vs. Exploitation.html
17.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.08-pm.png
17.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.en.vtt
17.3 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/data.json
17.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/08. Sigmoid Function.html
17.1 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 08-Module 01-Lesson 02_Regression/15. Linear Regression in scikit-learn.html
16.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
16.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt
16.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt
16.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/14. Quiz Dimensionality.html
16.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt
16.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/06. Deadline Policy.html
16.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/review-and-launch.png
16.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
15.6 kB
index.rar
15.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt
15.5 kB
Part 02-Module 01-Lesson 07_Keras/02. Keras.html
15.3 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/01. Introduction to GPU Workspaces.html
15.2 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/19. MC Control Constant-alpha, Part 2.html
15.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Refresh on Confusion Matrices.html
15.1 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt
15.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/22. Summary.html
15.0 kB
Part 02-Module 01-Lesson 08_TensorFlow/14. Save and Restore TensorFlow Models.html
14.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt
14.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/04. Forward Propagation.html
14.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. The Feedforward Process.html
14.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt
14.6 kB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 02_Deep Convolutional GANs/data.json
14.6 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/16. Quiz One-Step Dynamics, Part 2.html
14.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Backpropagation - Example (part a).html
14.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt
14.5 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.en.vtt
14.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.42-pm.png
14.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/14. Quiz Epsilon-Greedy Policies.html
14.4 kB
Part 08-Module 01-Lesson 02_Regression/19. (Optional) Closed form Solution Math.html
14.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt
14.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html
14.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.en.vtt
14.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt
14.2 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 03_Implementation of RNN and LSTM/data.json
14.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt
14.1 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt
14.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt
14.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. Backpropagation Through Time (part c).html
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/16. Quiz TensorFlow Dropout.html
13.9 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-create-account.png
13.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt
13.8 kB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 04_Semi-Supervised Learning/data.json
13.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/27. Summary.html
13.7 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 07_CNN Project Dog Breed Classifier/rubric.json
13.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/23. Some more math.html
13.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png
13.4 kB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 01_Introduction to RL/data.json
13.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary.html
13.4 kB
Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt
13.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/08. Epochs.html
13.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-10-02-at-10.41.44-am.png
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 08-Module 01-Lesson 02_Regression/17. Multiple Linear Regression.html
13.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/03. Data in NumPy.html
13.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/06. An Iterative Method, Part 2.html
13.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/edit-security-group.png
13.1 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Rubric - Dog Breed Classifier.html
13.1 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 07_Generate TV Scripts/rubric.json
13.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/06. Learning and Loss.html
13.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt
12.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/05. Forward Propagation Solution.html
12.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt
12.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.en.vtt
12.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
12.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/09. Quiz Goals and Rewards.html
12.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs.html
12.7 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Rubric - Generate TV Scripts.html
12.6 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/04. Program Structure.html
12.6 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt
12.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/12. Quiz Optimal Policies.html
12.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. Backpropagation Through Time (part a).html
12.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/09. Implementation.html
12.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt
12.5 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/07. CNNs in TensorFlow.html
12.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt
12.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.en.vtt
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html
12.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt
12.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html
12.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/04. Quiz Test Your Intuition.html
12.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/07. Quiz State-Value Functions.html
12.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt
12.4 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt
12.4 kB
Part 03-Module 01-Lesson 01_Cloud Computing/05. Launch an Instance.html
12.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt
12.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. RNN (part b).html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.2 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 06_Transfer Learning in TensorFlow/data.json
12.2 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt
12.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/03. Quiz Interpret the Policy.html
12.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.en.vtt
12.0 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 05_Embeddings and Word2vec/data.json
12.0 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. What are Jupyter notebooks.html
12.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/22. BPTT Quiz 3.html
12.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt
12.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
11.9 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/11. Action Values.html
11.9 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/19. Summary.html
11.9 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/02. Style Transfer.html
11.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/index.jpg
11.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neww-nk-fixed.gif
11.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/12. Quiz Pole-Balancing.html
11.7 kB
Part 02-Module 01-Lesson 08_TensorFlow/13. Deep Neural Network in TensorFlow.html
11.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/13. Convolutional Layers in Keras.html
11.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt
11.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt
11.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. Backpropagation- Theory.html
11.6 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters.html
11.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt
11.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/11. Gradient Descent.html
11.5 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt
11.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt
11.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/07. Quiz An Iterative Method.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.40.54-pm.png
11.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt
11.3 kB
Part 02-Module 01-Lesson 07_Keras/03. Pre-Lab Student Admissions in Keras.html
11.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/11. Backpropagation Quiz.html
11.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.en.vtt
11.2 kB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.en.vtt
11.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt
11.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt
11.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/18. Finite MDPs.html
11.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt
11.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt
11.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt
11.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt
10.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt
10.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/save-2.png
10.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/15. Quiz One-Step Dynamics, Part 1.html
10.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.55-pm.png
10.8 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/02. Instructions.html
10.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Refresh on ROC Curves.html
10.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/13. Summary.html
10.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. Feedforward Neural Network-Reminder.html
10.7 kB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.pt-BR.vtt
10.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
10.6 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/08. Mini Project Training an MLP on MNIST.html
10.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/15. More on Sensitivity and Specificity.html
10.6 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt
10.5 kB
Part 08-Module 01-Lesson 02_Regression/14. Absolute Error vs Squared Error.html
10.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt
10.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
10.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html
10.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/04. Launching the notebook server.html
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt
10.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt
10.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html
10.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt
10.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. RNN History.html
10.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/26. Check Your Understanding.html
10.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs for Image Classification.html
10.3 kB
Part 01-Module 01-Lesson 03_Anaconda/03. What is Anaconda.html
10.3 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/06. DDPG Agent.html
10.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.en.vtt
10.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt
10.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.en.vtt
10.2 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations.html
10.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/15. Finetuning.html
10.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt
10.2 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 07_CNN Project Dog Breed Classifier/data.json
10.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/02. OpenAI Gym FrozenLakeEnv.html
10.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt
10.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/11. NumPy Quiz.html
10.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/07. Feedforward Quiz.html
10.1 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/17. Summary.html
10.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. Solution Diagnosing Cancer.html
10.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt
10.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.04.24-pm.png
9.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/03. MiniFlow Architecture.html
9.9 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 06_Sentiment Prediction RNN/data.json
9.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-11.56.27-am.png
9.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
9.9 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.en.vtt
9.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/02. Graphs.html
9.9 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt
9.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html
9.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/24. Implementation.html
9.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt
9.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
9.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt
9.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.en.vtt
9.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
9.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt
9.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt
9.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt
9.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/09. Magic keywords.html
9.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/03. Your Workspace.html
9.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/21. Implementation.html
9.6 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt
9.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. From RNN to LSTM.html
9.5 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Description - Your first neural network.html
9.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt
9.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt
9.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. Skin Cancer.html
9.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html
9.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt
9.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/15. Implementation.html
9.5 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/04. DDPG Actor.html
9.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt
9.4 kB
Part 02-Module 01-Lesson 08_TensorFlow/12. Quiz TensorFlow ReLUs.html
9.4 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/01. Project Intro.html
9.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt
9.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt
9.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt
9.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.en.vtt
9.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt
9.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
9.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
9.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
9.3 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 05_Autoencoders/data.json
9.3 kB
Part 02-Module 01-Lesson 07_Keras/07. Pre-Lab IMDB Data in Keras.html
9.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/x-mn.png
9.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
9.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt
9.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/07. Udacity Support.html
9.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/07. Markdown cells.html
9.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/06. Quiz TensorFlow Cross Entropy.html
9.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/11. Quiz Incremental Mean.html
9.2 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 05_Project Predicting Bike Sharing Data/data.json
9.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt
9.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. RNN (part a).html
9.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. Quiz Sensitivity and Specificity.html
9.2 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/01. Convolutional Layers.html
9.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt
9.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/09. Mini Project 2.html
9.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/04. Implementation.html
9.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/06. Login to the Instance.html
9.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt
9.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/launch.png
9.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras.html
9.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/05. Notebook interface.html
9.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt
9.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt
9.0 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt
9.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html
9.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.en.vtt
9.0 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt
9.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/02. OpenAI Gym BlackjackEnv.html
9.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt
9.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html
9.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt
8.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt
8.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/03. Materials.html
8.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt
8.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.en.vtt
8.9 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.en.vtt
8.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.en.vtt
8.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html
8.8 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html
8.8 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/05. DDPG Critic.html
8.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/05. Quiz TensorFlow Softmax.html
8.8 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt
8.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
8.8 kB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions.html
8.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy.html
8.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/12. Implementation.html
8.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.45.22-pm.png
8.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/20. BPTT Quiz 1.html
8.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras.html
8.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/05. Quiz Episodic or Continuing.html
8.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.en.vtt
8.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. Quiz Data Challenges.html
8.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt
8.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt
8.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images.html
8.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. Quiz ROC Curve.html
8.7 kB
Part 08-Module 01-Lesson 02_Regression/20. Linear Regression Warnings.html
8.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt
8.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/27. Useful Resources.html
8.6 kB
Part 02-Module 01-Lesson 08_TensorFlow/03. Hello, Tensor World!.html
8.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. Quiz Random vs Pre-initialized Weights.html
8.6 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt
8.5 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.en.vtt
8.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. RNN Applications.html
8.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt
8.5 kB
Part 01-Module 01-Lesson 03_Anaconda/06. Managing environments.html
8.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
8.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html
8.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/02. Installing TensorFlow.html
8.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/15. Unfolded Model Quiz.html
8.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
8.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. Quiz Diagnosing Cancer.html
8.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt
8.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt
8.4 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/08. Troubleshooting.html
8.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt
8.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
8.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/07. Implementation.html
8.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt
8.4 kB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 03_Policy-Based Methods/data.json
8.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt
8.4 kB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 04_Weight Initialization/data.json
8.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt
8.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/21. BPTT Quiz 2.html
8.4 kB
Part 08-Module 01-Lesson 02_Regression/13. Mini-batch Gradient Descent.html
8.4 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/02. Quiz Convolutional Layers.html
8.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt
8.3 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html
8.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt
8.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt
8.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt
8.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/09. Pre-Lab NotMNIST in TensorFlow.html
8.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt
8.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt
8.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.en.vtt
8.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
8.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/08. Implementation.html
8.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt
8.3 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Rubric - Your first neural network.html
8.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/20. Mini Project 6.html
8.2 kB
Part 03-Module 01-Lesson 01_Cloud Computing/03. Get Access to GPU Instances.html
8.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt
8.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/16. Analyzing Performance.html
8.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html
8.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/12. Mini Project 3.html
8.2 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt
8.2 kB
Part 01-Module 01-Lesson 03_Anaconda/05. Managing packages.html
8.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.pt-BR.vtt
8.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt
8.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/21. Mini Project Image Augmentation in Keras.html
8.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
8.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt
8.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/17. Mini Project 5.html
8.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
8.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
8.1 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt
8.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
8.1 kB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 05_Project Predicting Bike Sharing Data/rubric.json
8.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
8.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt
8.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html
8.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/19. Mini Project CNNs in Keras.html
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
8.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt
8.0 kB
Part 08-Module 01-Lesson 02_Regression/02. Quiz Housing Prices.html
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
8.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
8.0 kB
Part 08-Module 01-Lesson 02_Regression/12. Mean vs Total Error.html
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html
8.0 kB
Part 02-Module 01-Lesson 08_TensorFlow/01. Intro.html
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html
8.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.en.vtt
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. Image Challenges.html
8.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2-grad-fixed.gif
8.0 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt
8.0 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt
7.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number of Training Iterations Epochs.html
7.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras.html
7.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs for Image Classification.html
7.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/02. OpenAI Gym CliffWalkingEnv.html
7.9 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/18. Implementation.html
7.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt
7.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.pt-BR.vtt
7.9 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Description - Dog Breed Classifier.html
7.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/02. Resources.html
7.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix.html
7.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt
7.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt
7.8 kB
Part 05-Module 01-Lesson 03_Generate Faces/Project Rubric - Generate Faces.html
7.8 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Rubric - Teach a Quadcopter How to Fly.html
7.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt
7.8 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt
7.8 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt
7.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/11. Two-layer Neural Network.html
7.8 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt
7.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/17. Doing More With Your GAN.html
7.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt
7.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt
7.7 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/04. Implementation.html
7.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/03. Learning Plan.html
7.7 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/01. Introduction.html
7.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.en.vtt
7.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. RNN Introduction.html
7.7 kB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 04_Actor-Critic Methods/data.json
7.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.en.vtt
7.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt
7.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt
7.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random vs Pre-initialized Weight.html
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction.html
7.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.pt-BR.vtt
7.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivity and Specificity.html
7.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What is the network looking at.html
7.6 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/08. Community Guidelines.html
7.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well .html
7.6 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example.html
7.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/20. Implementation.html
7.5 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt
7.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1.html
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training the Neural Network.html
7.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/11. Creating a slideshow.html
7.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt
7.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt
7.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt
7.5 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.en.vtt
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction.html
7.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.en.vtt
7.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. False Negatives and Positives.html
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges.html
7.5 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating the Training.html
7.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers.html
7.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.pt-BR.vtt
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification.html
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt
7.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Probability of Skin Cancer.html
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve.html
7.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/16. Implementation.html
7.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. Comparing our Results with Doctors.html
7.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt
7.4 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt
7.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix.html
7.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/10. Mini Project DP (Parts 0 and 1).html
7.4 kB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/01. Enroll in your next ND program.html
7.4 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/04. Max Pooling Layers.html
7.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/13. Mini Project DP (Part 2).html
7.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/16. Mini Project DP (Part 3).html
7.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/19. Mini Project DP (Part 4).html
7.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/22. Mini Project DP (Part 5).html
7.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/25. Mini Project DP (Part 6).html
7.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization.html
7.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis.html
7.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. RNN- Example.html
7.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Intro.html
7.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion.html
7.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.05.19-pm.png
7.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt
7.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The data.html
7.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.en.vtt
7.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt
7.4 kB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent.html
7.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/14. Implementation.html
7.4 kB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 03_Generate Faces/rubric.json
7.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt
7.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.en.vtt
7.3 kB
Part 08-Module 01-Lesson 02_Regression/24. Neural Networks Playground.html
7.3 kB
Part 01-Module 01-Lesson 03_Anaconda/04. Installing Anaconda.html
7.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt
7.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/15. Mini Project 4.html
7.3 kB
Part 04-Module 01-Lesson 04_Hyperparameters/04. Learning Rate.html
7.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html
7.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.en.vtt
7.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity.html
7.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding.html
7.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.en.vtt
7.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/06. Mini Project 1.html
7.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt
7.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt
7.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt
7.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/26. Wrap Up.html
7.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt
7.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. RNN- Unfolded Model.html
7.1 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/10. Quiz.html
7.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt
7.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.en.vtt
7.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt
7.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/05. Mini Project MC (Parts 0 and 1).html
7.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt
7.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation.html
7.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration.html
7.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/08. Mini Project MC (Part 2).html
7.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/17. Mini Project MC (Part 3).html
7.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/21. Mini Project MC (Part 4).html
7.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution.html
7.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt
7.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights.html
7.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method, Part 1.html
7.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/04. The Notebooks.html
7.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt
7.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt
7.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. Introducing Ortal .html
7.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement.html
7.0 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/05. Quiz Max Pooling Layers.html
7.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.en.vtt
7.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration.html
7.0 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return.html
7.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation.html
7.0 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt
7.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.en.vtt
6.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt
6.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Meet Andrew.html
6.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/07. Ornstein–Uhlenbeck Noise.html
6.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/04. Quiz Space Representations.html
6.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.pt-BR.vtt
6.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution.html
6.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution.html
6.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution.html
6.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution.html
6.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. Recall.html
6.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.en.vtt
6.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt
6.9 kB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution.html
6.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt
6.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction.html
6.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html
6.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/06. Build a GAN.html
6.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/10. Cost Solution.html
6.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2.html
6.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt
6.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions.html
6.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network.html
6.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-2.png
6.8 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications.html
6.8 kB
Part 01-Module 01-Lesson 03_Anaconda/07. More environment actions.html
6.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. Precision.html
6.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/01. Transfer Learning Intro.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt
6.7 kB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices.html
6.7 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/11. Implementation.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/01. Intro.html
6.7 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/01. CNN Project.html
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error.html
6.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/04. Fitting a Line Through Data.html
6.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error.html
6.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration.html
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha, Part 1.html
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values.html
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions.html
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/22. Regularization.html
6.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise.html
6.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt
6.7 kB
Part 08-Module 01-Lesson 02_Regression/05. Moving a Line.html
6.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/10. Converting notebooks.html
6.7 kB
Part 01-Module 01-Lesson 03_Anaconda/09. On Python versions at Udacity.html
6.7 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html
6.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick.html
6.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask.html
6.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction.html
6.6 kB
Part 08-Module 01-Lesson 02_Regression/25. Outro.html
6.6 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt
6.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem.html
6.6 kB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression.html
6.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Conclusion.html
6.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt
6.6 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym.html
6.6 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt
6.6 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt
6.6 kB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt
6.6 kB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 03_Generate Faces/data.json
6.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/11. Implementing Deep Q-Learning.html
6.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/01. Semi-supervised Learning.html
6.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.en.vtt
6.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/01. Embeddings Intro.html
6.5 kB
Part 01-Module 01-Lesson 03_Anaconda/08. Best practices.html
6.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/10. Quiz Action-Value Functions.html
6.5 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt
6.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt
6.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements.html
6.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. How GANs work.html
6.4 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt
6.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt
6.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt
6.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/09. RNN Hyperparameters.html
6.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.zh-CN.vtt
6.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.pt-BR.vtt
6.4 kB
Part 02-Module 01-Lesson 08_TensorFlow/10. Lab NotMNIST in TensorFlow.html
6.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/05. Mini Project TD (Parts 0 and 1).html
6.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction.html
6.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/09. Mini Project TD (Part 2).html
6.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/12. Mini Project TD (Part 3).html
6.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/15. Mini Project TD (Part 4).html
6.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt
6.4 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/04. Flappy Bird.html
6.4 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/03. Solution Convolutional Layers.html
6.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt
6.3 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions.html
6.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/01. Deep Convolutional GANs.html
6.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt
6.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy.html
6.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.en.vtt
6.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt
6.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt
6.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt
6.2 kB
Part 03-Module 01-Lesson 01_Cloud Computing/04. Apply Credits.html
6.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.zh-CN.vtt
6.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt
6.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solution.html
6.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.en.vtt
6.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values.html
6.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.en.vtt
6.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions.html
6.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.zh-CN.vtt
6.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited.html
6.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games and Equilibria.html
6.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-grad-fixed.gif
6.2 kB
Part 04-Module 01-Lesson 04_Hyperparameters/10. Sources & References.html
6.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.zh-CN.vtt
6.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/03. Batch Normalization.html
6.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt
6.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. Introducing Ian Goodfellow.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.pt-BR.vtt
6.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward.html
6.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa.html
6.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution.html
6.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt
6.1 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/03. Replay Buffer.html
6.1 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Description - Generate TV Scripts.html
6.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.en.vtt
6.1 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.en.vtt
6.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. What can you do with GANs.html
6.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2.html
6.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3.html
6.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.zh-CN.vtt
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. Practical tips and tricks for training GANs.html
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt
6.1 kB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 05_Teach a Quadcopter How to Fly/rubric.json
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Get started with a GAN.html
6.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning.html
6.1 kB
Part 03-Module 01-Lesson 05_Autoencoders/01. Autoencoder Lesson Intro.html
6.1 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number of Hidden Units Layers.html
6.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm.html
6.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network.html
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.en.vtt
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network.html
6.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/01. Overview.html
6.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt
6.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers.html
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network.html
6.1 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction.html
6.0 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/01. Intro to LSTM.html
6.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses.html
6.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN.html
6.0 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt
6.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.en.vtt
6.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt
6.0 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.en.vtt
6.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt
6.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt
5.9 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/01. Intro.html
5.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt
5.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/12. TensorFlow Implementation.html
5.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt
5.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/index.html
5.9 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. DeepTraffic.html
5.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/06. Exercise Discretization.html
5.9 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/jupyter-logo.png
5.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt
5.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.zh-CN.vtt
5.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/08. Exercise Tile Coding.html
5.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/17. Outro.html
5.9 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. The Use Gate.html
5.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt
5.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-1.png
5.9 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/06. Solution Max Pooling Layers.html
5.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html
5.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.en.vtt
5.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt
5.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html
5.9 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. The Learn Gate.html
5.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt
5.9 kB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 07_Generate TV Scripts/data.json
5.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt
5.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt
5.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt
5.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt
5.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay.html
5.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html
5.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0).html
5.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0).html
5.8 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Description - Teach a Quadcopter How to Fly.html
5.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt
5.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt
5.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network.html
5.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt
5.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/04. Character-wise RNN Notebook.html
5.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/15. Outro.html
5.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning.html
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/04. DCGAN Implementation.html
5.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html
5.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. The Forget Gate.html
5.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html
5.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.pt-BR.vtt
5.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html
5.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt
5.8 kB
Part 02-Module 01-Lesson 07_Keras/05. Optimizers in Keras.html
5.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html
5.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt
5.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning.html
5.8 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt
5.8 kB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.en.vtt
5.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html
5.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.en.vtt
5.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html
5.7 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets.html
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html
5.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt
5.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation.html
5.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html
5.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate.html
5.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces.html
5.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other architectures.html
5.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation.html
5.7 kB
Part 01-Module 01-Lesson 03_Anaconda/02. Introduction.html
5.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator.html
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html
5.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/09. Prerequisites.html
5.7 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction.html
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing.html
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html
5.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning.html
5.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html
5.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. The Remember Gate.html
5.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/06. Code cells.html
5.7 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html
5.7 kB
Part 02-Module 01-Lesson 07_Keras/01. Intro.html
5.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt
5.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/02. Quadcopter workspace.html
5.6 kB
Part 07_Guaranteed Admission into your next Nanodegree/Module 01_Guaranteed Admission into your next Nanodegree/Lesson 01_Enroll in your next Nanodegree program/data.json
5.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt
5.6 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You Will Build.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Classification with GANs.html
5.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN.html
5.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Welcome to MiniFlow.html
5.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization.html
5.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding.html
5.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions.html
5.6 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution.html
5.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt
5.6 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/01. Intro.html
5.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding.html
5.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning.html
5.6 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting Set Up.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution.html
5.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/index.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network.html
5.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.pt-BR.vtt
5.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build the Network Solution.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise.html
5.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution.html
5.6 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt
5.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary.html
5.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning.html
5.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt
5.6 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/08. CNNs - Additional Resources.html
5.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.en.vtt
5.6 kB
Part 05-Module 01-Lesson 03_Generate Faces/Project Description - Generate Faces.html
5.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output and Loss Solutions.html
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt
5.5 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/01. Introduction.html
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt
5.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution.html
5.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html
5.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/08. Keyboard shortcuts.html
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.en.vtt
5.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/05. Books to Read.html
5.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.en.vtt
5.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-wise RNNs.html
5.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution.html
5.5 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt
5.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep.html
5.5 kB
Part 03-Module 01-Lesson 01_Cloud Computing/02. Create an AWS Account.html
5.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence Batching.html
5.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build the Network.html
5.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt
5.5 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.en.vtt
5.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.en.vtt
5.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Precision and Recall.html
5.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dsdl1.png
5.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example.html
5.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.en.vtt
5.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/01. Instructor.html
5.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies.html
5.5 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt
5.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss.html
5.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt
5.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt
5.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up.html
5.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output.html
5.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt
5.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt
5.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size.html
5.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html
5.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell.html
5.4 kB
Part 02-Module 01-Lesson 07_Keras/04. Lab Student Admissions in Keras.html
5.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt
5.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources.html
5.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality.html
5.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/01. Introducing Jay.html
5.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt
5.4 kB
Part 02-Module 01-Lesson 07_Keras/08. Lab IMDB Data in Keras.html
5.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies.html
5.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.en.vtt
5.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/03. Installing Jupyter Notebook.html
5.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/index.html
5.4 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/01. Intro.html
5.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt
5.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.pt-BR.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt
5.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt
5.4 kB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt
5.4 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2.html
5.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion Matrix 2.html
5.3 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/12. Finishing up.html
5.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html
5.3 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes.html
5.3 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Dimensions.html
5.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.en.vtt
5.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building and Training the Network.html
5.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting it All Together.html
5.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. Architecture of LSTM.html
5.3 kB
Part 01-Module 01-Lesson 03_Anaconda/01. Instructor.html
5.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt
5.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt
5.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameter Solutions.html
5.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.en.vtt
5.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN and the Generator.html
5.3 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.zh-CN.vtt
5.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution.html
5.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.pt-BR.vtt
5.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. Basics of LSTM.html
5.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt
5.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt
5.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN vs LSTM.html
5.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt
5.2 kB
Part 03-Module 01-Lesson 04_Weight Initialization/01. Weight Initialization Intro.html
5.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution.html
5.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/12. Outro LSTM.html
5.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors.html
5.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.en.vtt
5.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. DCGAN Architecture.html
5.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator.html
5.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.pt-BR.vtt
5.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt
5.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt
5.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Classifier Solution.html
5.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning with VGGNet.html
5.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt
5.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt
5.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets.html
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Classifier.html
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training solution.html
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training.html
5.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building the Network Solution.html
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation Solution.html
5.2 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction.html
5.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. VGGNet Solution.html
5.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/03. Face Generation Workspace.html
5.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation.html
5.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/index.html
5.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve.html
5.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt
5.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt
5.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. VGGNet.html
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec.html
5.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When accuracy won't work.html
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution.html
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building the Network.html
5.1 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/02. Project Workspace.html
5.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt
5.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/06. Reference Guide.html
5.1 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. Actor-Critic with Advantage.html
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling.html
5.1 kB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.ar.vtt
5.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution.html
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results.html
5.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches.html
5.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/index.html
5.0 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/02. Dog Breed Workspace.html
5.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt
5.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. Actor-Critic Methods.html
5.0 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/02. TV Script Workspace.html
5.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. Two Function Approximators.html
5.0 kB
Part 03-Module 01-Lesson 04_Weight Initialization/06. Additional Material.html
5.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. Advantage Function.html
5.0 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction.html
5.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt
5.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt
5.0 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building the RNN.html
5.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. The Actor and The Critic.html
5.0 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.pt-BR.vtt
5.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. A Better Score Function.html
5.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 08-Module 01-Lesson 02_Regression/index.html
5.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/07. More Resources.html
5.0 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/03. Mini Project.html
5.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt
5.0 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/01. Introduction.html
4.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. Welcome to the Deep Learning Nanodegree Program.html
4.9 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoders Solution.html
4.9 kB
Part 02-Module 01-Lesson 07_Keras/06. Mini Project Intro.html
4.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt
4.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/03. GPU Workspace Playground.html
4.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt
4.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.en.vtt
4.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt
4.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt
4.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt
4.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. Policy Function Approximation.html
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. Monte Carlo Policy Gradients.html
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. Constrained Policy Gradients.html
4.9 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution.html
4.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/index.html
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. Why Policy-Based Methods.html
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. Stochastic Policy Search.html
4.9 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders.html
4.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. Policy-Based Methods.html
4.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.zh-CN.vtt
4.9 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. Policy Gradients.html
4.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt
4.9 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt
4.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/index.html
4.8 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. Recap.html
4.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt
4.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training the Network.html
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt
4.8 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary.html
4.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt
4.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt
4.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment RNN.html
4.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing.html
4.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.en.vtt
4.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.en.vtt
4.8 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Uniform Distribution.html
4.8 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Normal Distribution.html
4.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Solutions.html
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders.html
4.8 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Ones and Zeros.html
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt
4.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt
4.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.en.vtt
4.8 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Too Small.html
4.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt
4.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt
4.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt
4.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt
4.7 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project.html
4.7 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt
4.7 kB
Part 05-Module 01-Lesson 03_Generate Faces/01. One Project Away!.html
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt
4.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt
4.7 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.en.vtt
4.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt
4.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt
4.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Introduction.html
4.7 kB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt
4.7 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt
4.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.en.vtt
4.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.pt-BR.vtt
4.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt
4.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt
4.7 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. Project Introduction.html
4.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt
4.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt
4.6 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/02. Workspace Playground.html
4.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt
4.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt
4.6 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting.html
4.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.pt-BR.vtt
4.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.en.vtt
4.6 kB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt
4.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 03-Module 01-Lesson 05_Autoencoders/03. A Simple Autoencoder.html
4.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt
4.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.pt-BR.vtt
4.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt
4.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt
4.6 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt
4.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt
4.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt
4.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt
4.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/index.html
4.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.pt-BR.vtt
4.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.en.vtt
4.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt
4.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/index.html
4.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt
4.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt
4.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt
4.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt
4.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt
4.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.en.vtt
4.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt
4.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt
4.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt
4.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt
4.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.en.vtt
4.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt
4.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt
4.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/index.html
4.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt
4.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/index.html
4.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt
4.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt
4.3 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.pt-BR.vtt
4.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/maze.png
4.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt
4.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.en.vtt
4.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.zh-CN.vtt
4.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.zh-CN.vtt
4.2 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt
4.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.en.vtt
4.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.en.vtt
4.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/index.html
4.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt
4.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt
4.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt
4.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt
4.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt
4.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt
4.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt
4.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.pt-BR.vtt
4.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.en.vtt
4.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.en.vtt
4.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/index.html
4.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt
4.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/index.html
4.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt
4.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt
4.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt
4.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt
4.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-chain.png
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.en.vtt
4.0 kB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.en.vtt
4.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/index.html
4.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-grad-fixed.gif
4.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt
4.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/index.html
4.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/index.html
4.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt
4.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.en.vtt
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/index.html
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.zh-CN.vtt
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt
4.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.zh-CN.vtt
3.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt
3.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt
3.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt
3.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.en.vtt
3.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.44.44-pm.png
3.9 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 02_Regression/img/m.gif
3.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt
3.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt
3.9 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.en.vtt
3.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/index.html
3.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/index.html
3.9 kB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.en.vtt
3.9 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.zh-CN.vtt
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.en.vtt
3.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.en.vtt
3.9 kB
assets/css/styles.css
3.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt
3.8 kB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt
3.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt
3.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt
3.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt
3.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/index.html
3.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl2dw2-grad.png
3.8 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt
3.8 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/index.html
3.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/index.html
3.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt
3.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt
3.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/index.html
3.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt
3.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt
3.7 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt
3.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt
3.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/index.html
3.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/index.html
3.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.en.vtt
3.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt
3.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/index.html
3.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/index.html
3.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt
3.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt
3.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt
3.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt
3.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.en.vtt
3.7 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt
3.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.pt-BR.vtt
3.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/index.html
3.7 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt
3.7 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/index.html
3.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl1dw1-grad.png
3.6 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/index.html
3.6 kB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.en.vtt
3.6 kB
Part 01-Module 01-Lesson 03_Anaconda/index.html
3.6 kB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt
3.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt
3.6 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.en.vtt
3.6 kB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.en.vtt
3.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt
3.6 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt
3.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 02-Module 01-Lesson 07_Keras/index.html
3.6 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.zh-CN.vtt
3.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.zh-CN.vtt
3.5 kB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.en.vtt
3.5 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/index.html
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.en.vtt
3.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.zh-CN.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt
3.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt
3.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/cost.png
3.5 kB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt
3.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt
3.5 kB
Part 03-Module 01-Lesson 01_Cloud Computing/index.html
3.5 kB
Part 03-Module 01-Lesson 05_Autoencoders/index.html
3.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.pt-BR.vtt
3.4 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/index.html
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt
3.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt
3.4 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt
3.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt
3.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.en.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.zh-CN.vtt
3.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.en.vtt
3.4 kB
Part 03-Module 01-Lesson 04_Weight Initialization/index.html
3.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/19.png
3.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.zh-CN.vtt
3.4 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/index.html
3.4 kB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt
3.4 kB
Part 05-Module 01-Lesson 03_Generate Faces/index.html
3.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt
3.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt
3.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.en.vtt
3.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.zh-CN.vtt
3.3 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/index.html
3.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt
3.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/index.html
3.3 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt
3.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt
3.3 kB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt
3.3 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/index.html
3.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.en.vtt
3.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt
3.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl2ds-grad.png
3.3 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt
3.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png
3.3 kB
Part 01-Module 01-Lesson 02_Applying Deep Learning/index.html
3.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt
3.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.pt-BR.vtt
3.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt
3.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt
3.2 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/index.html
3.2 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt
3.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt
3.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt
3.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt
3.2 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt
3.2 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/index.html
3.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt
3.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.en.vtt
3.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.en.vtt
3.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.en.vtt
3.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt
3.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.en.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.en.vtt
3.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt
3.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.en.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt
3.1 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt
3.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt
3.1 kB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/index.html
3.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt
3.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt
3.1 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt
3.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.en.vtt
3.0 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.en.vtt
3.0 kB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.en.vtt
3.0 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif
3.0 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.zh-CN.vtt
3.0 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.en.vtt
3.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt
3.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt
3.0 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt
3.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt
2.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.en.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt
2.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt
2.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt
2.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt
2.9 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt
2.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt
2.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt
2.9 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.pt-BR.vtt
2.9 kB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt
2.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt
2.8 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt
2.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt
2.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt
2.8 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt
2.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.en.vtt
2.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.en.vtt
2.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt
2.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-chain.png
2.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt
2.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.zh-CN.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.en.vtt
2.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.en.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt
2.7 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.en.vtt
2.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt
2.6 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.pt-BR.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt
2.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neww.png
2.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.en.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt
2.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.en.vtt
2.6 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt
2.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt
2.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt
2.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt
2.6 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt
2.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt
2.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt
2.6 kB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt
2.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.zh-CN.vtt
2.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt
2.5 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt
2.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt
2.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.en.vtt
2.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.en.vtt
2.5 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.en.vtt
2.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt
2.4 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt
2.4 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.en.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt
2.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt
2.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.en.vtt
2.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.en.vtt
2.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt
2.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/newx-1n.png
2.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png
2.3 kB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt
2.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.en.vtt
2.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt
2.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif
2.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt
2.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt
2.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/21.png
2.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt
2.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt
2.2 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt
2.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neuron-output.png
2.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.en.vtt
2.1 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en-US.vtt
2.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.en.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.en.vtt
2.1 kB
Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-61.gif
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt
2.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt
2.1 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.en.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.en.vtt
2.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/b-1byk.png
2.1 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 02_Regression/img/f1.gif
2.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt
2.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.en.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt
2.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt
2.0 kB
Part 08-Module 01-Lesson 02_Regression/img/f2.gif
1.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt
1.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.pt-BR.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.pt-BR.vtt
1.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt
1.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt
1.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.en.vtt
1.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.zh-CN.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt
1.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt
1.8 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.en.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.pt-BR.vtt
1.8 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt
1.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif
1.8 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en.vtt
1.8 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt
1.7 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt
1.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif
1.7 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt
1.7 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt
1.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/12.png
1.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.en.vtt
1.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.en.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.en.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt
1.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.en.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 08-Module 01-Lesson 02_Regression/img/f6.gif
1.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en-US.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt
1.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt
1.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt
1.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt
1.6 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BrR.vtt
1.6 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt
1.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/z.png
1.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.en.vtt
1.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.zh-CN.vtt
1.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt
1.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt
1.5 kB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt
1.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt
1.5 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt
1.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt
1.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 02_Regression/img/y.gif
1.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.en.vtt
1.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.zh-CN.vtt
1.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.en.vtt
1.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/l2.png
1.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.pt-BR.vtt
1.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt
1.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.en.vtt
1.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt
1.4 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.en.vtt
1.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt
1.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.en.vtt
1.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-62.gif
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt
1.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.en.vtt
1.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2.png
1.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.en.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt
1.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt
1.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/linear-equation.gif
1.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt
1.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.en.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.en.vtt
1.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt
1.2 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/img/e.gif
1.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/newx.png
1.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.pt-BR.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.zh-CN.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt
1.2 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.en.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt
1.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2.png
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/img/f4.gif
1.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt
1.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.en.vtt
1.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt
1.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.zh-CN.vtt
1.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt
1.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt
1.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.zh-CN.vtt
1.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt
1.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.en.vtt
1.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.en.vtt
1.1 kB
Part 08-Module 01-Lesson 02_Regression/img/gif-1.gif
1.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.pt-BR.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt
1.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.pt-BR.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.en.vtt
1.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt
1.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt
1.0 kB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt
1.0 kB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt
1.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt
1.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt
996 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt
995 Bytes
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt
983 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt
977 Bytes
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt
970 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt
965 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt
959 Bytes
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt
956 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.en.vtt
943 Bytes
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt
939 Bytes
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt
939 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt
937 Bytes
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.en.vtt
937 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt
920 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.en.vtt
910 Bytes
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt
891 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt
889 Bytes
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.zh-CN.vtt
883 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt
874 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.en.vtt
874 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.en.vtt
867 Bytes
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.pt-BR.vtt
866 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.pt-BR.vtt
857 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.en.vtt
856 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt
853 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt
850 Bytes
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt
850 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt
840 Bytes
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt
831 Bytes
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.en.vtt
830 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt
824 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt
823 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.zh-CN.vtt
822 Bytes
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.zh-CN.vtt
822 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt
810 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt
804 Bytes
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt
793 Bytes
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt
792 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt
791 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt
787 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt
772 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt
766 Bytes
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt
764 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt
754 Bytes
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt
746 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt
734 Bytes
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.en.vtt
734 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt
730 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt
729 Bytes
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.en.vtt
725 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt
720 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.zh-CN.vtt
718 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en-US.vtt
716 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt
701 Bytes
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt
700 Bytes
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.en.vtt
694 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en.vtt
688 Bytes
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt
685 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt
678 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en.vtt
667 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt.vtt
656 Bytes
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.zh-CN.vtt
655 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt
643 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt
640 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt
632 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt
618 Bytes
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt
615 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt
599 Bytes
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.pt-BR.vtt
590 Bytes
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.en.vtt
586 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt
574 Bytes
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.en.vtt
558 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt
540 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt
538 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt
526 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt
524 Bytes
[TGx]Downloaded from torrentgalaxy.org.txt
524 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt
510 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt
508 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt
505 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt
487 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt
482 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt
478 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt
475 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt
472 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt
468 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt
466 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt
456 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt
420 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt
419 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt
91 Bytes
Torrent Downloaded From GloDls.to.txt
84 Bytes
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt
72 Bytes
Presented By SaM.txt
33 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>