搜索
[FreeCourseSite.com] Udemy - Master Deep Learning with TensorFlow in Python
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Master Deep Learning with TensorFlow in Python
磁力链接/BT种子简介
种子哈希:
f56ad7b56cd1f8d8b57448dc482a09d53c8d768c
文件大小:
1.44G
已经下载:
291
次
下载速度:
极快
收录时间:
2021-03-10
最近下载:
2024-11-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:F56AD7B56CD1F8D8B57448DC482A09D53C8D768C
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
after this our exile
michael jackson flac
【公式】人妻肉便器ヒマワリ
woodmancastingx
fc2-ppv-4533650
遭导演潜规则视频流出
朋友的丰满妈咪2018
清纯口交颜射
akb48
sofiadex
仙仙桃足交
网易cc
+fc2系列-fc2匿名男合集+超绝可爱楚楚可怜的美少女们
堕落令嬢
门小
宫能复仇
水光裤
麻豆传媒 少妇白洁
马尾少妇
悲哀小狗
akane
落山风
nrs-041
插入
面具白色
4.1
神秘探花李八八
fantia
hardcore reina
七七
文件列表
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4
151.3 MB
1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4
110.9 MB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4
52.2 MB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4
51.8 MB
2. Introduction to neural networks/24. N-parameter gradient descent.mp4
41.4 MB
2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4
40.1 MB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4
39.9 MB
13. Business case/4. Preprocessing the data.mp4
36.0 MB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4
35.5 MB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4
35.2 MB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4
34.2 MB
13. Business case/6. Create a class for batching.mp4
29.0 MB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4
28.0 MB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4
25.2 MB
13. Business case/1. Exploring the dataset and identifying predictors.mp4
24.4 MB
14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4
23.6 MB
12. The MNIST example/9. Discuss the results and test.mp4
23.0 MB
4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4
21.8 MB
13. Business case/7. Outlining the model.mp4
20.4 MB
12. The MNIST example/4. Outlining the model.mp4
19.3 MB
2. Introduction to neural networks/22. One parameter gradient descent.mp4
18.6 MB
1. Welcome! Course introduction/2. What does the course cover.mp4
17.2 MB
12. The MNIST example/8. Learning.mp4
16.7 MB
5. TensorFlow - An introduction/1. TensorFlow outline.mp4
15.2 MB
5. TensorFlow - An introduction/6. Model output.mp4
15.0 MB
15. Conclusion/1. See how much you have learned.mp4
14.6 MB
13. Business case/3. Balancing the dataset.mp4
14.5 MB
3. Setting up the working environment/2. Why Python and why Jupyter.mp4
14.3 MB
2. Introduction to neural networks/1. Introduction to neural networks.mp4
14.2 MB
6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4
14.1 MB
13. Business case/11. A comment on the homework.mp4
13.6 MB
5. TensorFlow - An introduction/4. Inputs, outputs, targets, weights, biases - model layout.mp4
13.6 MB
12. The MNIST example/6. Accuracy of prediction.mp4
13.0 MB
13. Business case/8. Optimizing the algorithm.mp4
12.8 MB
2. Introduction to neural networks/5. Types of machine learning.mp4
12.8 MB
2. Introduction to neural networks/20. Cross-entropy loss.mp4
11.9 MB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4
11.7 MB
6. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4
11.6 MB
8. Overfitting/1. Underfitting and overfitting.mp4
11.6 MB
15. Conclusion/3. An overview of CNNs.mp4
11.5 MB
3. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4
11.4 MB
4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4
11.2 MB
10. Gradient descent and learning rates/4. Learning rate schedules.mp4
10.8 MB
4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4
10.2 MB
5. TensorFlow - An introduction/5. Loss function and gradient descent - introducing optimizers.mp4
10.2 MB
8. Overfitting/6. Early stopping.mp4
9.9 MB
3. Setting up the working environment/4. Installing Anaconda.mp4
9.8 MB
10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4
9.8 MB
8. Overfitting/3. Training and validation.mp4
9.7 MB
2. Introduction to neural networks/7. The linear model.mp4
9.6 MB
6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4
9.4 MB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4
9.3 MB
2. Introduction to neural networks/3. Training the model.mp4
9.2 MB
6. Going deeper Introduction to deep neural networks/5. Activation functions.mp4
9.2 MB
11. Preprocessing/1. Preprocessing introduction.mp4
8.8 MB
11. Preprocessing/3. Standardization.mp4
8.7 MB
9. Initialization/1. Initialization - Introduction.mp4
8.4 MB
15. Conclusion/6. An overview of non-NN approaches.mp4
8.2 MB
10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4
8.2 MB
5. TensorFlow - An introduction/2. TensorFlow intro.mp4
7.9 MB
2. Introduction to neural networks/10. The linear model. Multiple inputs.mp4
7.9 MB
8. Overfitting/4. Training, validation, and test.mp4
7.8 MB
6. Going deeper Introduction to deep neural networks/6. Softmax activation.vtt
7.7 MB
6. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4
7.7 MB
12. The MNIST example/1. The dataset.mp4
7.7 MB
12. The MNIST example/2. How to tackle the MNIST.mp4
7.7 MB
2. Introduction to neural networks/18. L2-norm loss.mp4
7.6 MB
12. The MNIST example/5. Declaring the loss and the optimization algorithm.mp4
7.5 MB
8. Overfitting/5. N-fold cross validation.mp4
7.3 MB
6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4
7.2 MB
8. Overfitting/2. Underfitting and overfitting - classification.mp4
7.1 MB
6. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4
7.0 MB
4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4
6.9 MB
6. Going deeper Introduction to deep neural networks/7. Backpropagation.vtt
6.8 MB
2. Introduction to neural networks/14. Graphical representation.mp4
6.7 MB
15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4
6.6 MB
11. Preprocessing/5. One-hot and binary encoding.mp4
6.5 MB
10. Gradient descent and learning rates/3. Momentum.mp4
6.4 MB
11. Preprocessing/4. Dealing with categorical data.mp4
6.4 MB
5. TensorFlow - An introduction/3. Types of file formats in TensorFlow.mp4
6.1 MB
9. Initialization/3. Xavier initialization.mp4
6.1 MB
2. Introduction to neural networks/16. The objective function.mp4
6.0 MB
9. Initialization/2. Types of simple initializations.mp4
5.9 MB
3. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4
5.9 MB
12. The MNIST example/3. Importing the relevant packages.mp4
5.7 MB
13. Business case/9. Interpreting the result.mp4
5.6 MB
15. Conclusion/5. An overview of RNNs.mp4
5.1 MB
3. Setting up the working environment/9. Installing the TensorFlow package.mp4
5.1 MB
6. Going deeper Introduction to deep neural networks/1. Layers.mp4
5.0 MB
12. The MNIST example/7. Batching and early stopping.mp4
4.8 MB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4
4.5 MB
13. Business case/10. Testing the model.mp4
4.5 MB
13. Business case/2. Outlining the business case solution.mp4
4.0 MB
11. Preprocessing/2. Basic preprocessing.mp4
3.8 MB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4
3.3 MB
3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4
2.8 MB
6. Going deeper Introduction to deep neural networks/1.1 Course Notes - Section 6.pdf.pdf
958.9 kB
6. Going deeper Introduction to deep neural networks/2.1 Course Notes - Section 6.pdf.pdf
958.9 kB
2. Introduction to neural networks/1.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/10.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/12.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/14.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/16.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/18.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/20.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/22.2 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/24.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/3.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/5.1 Course Notes - Section 2.pdf.pdf
949.9 kB
2. Introduction to neural networks/7.1 Course Notes - Section 2.pdf.pdf
949.9 kB
13. Business case/1.1 Audiobooks_data.csv.csv
727.8 kB
3. Setting up the working environment/7.1 Shortcuts for Jupyter.pdf.pdf
634.0 kB
7. Backpropagation. A peek into the Mathematics of Optimization/1.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf.pdf
186.7 kB
2. Introduction to neural networks/22.1 GD-function-example.xlsx.xlsx
43.4 kB
13. Business case/4. Preprocessing the data.vtt
12.0 kB
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.vtt
10.6 kB
4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.vtt
9.7 kB
13. Business case/1. Exploring the dataset and identifying predictors.vtt
9.7 kB
12. The MNIST example/8. Learning.vtt
9.1 kB
1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.vtt
9.0 kB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.vtt
8.4 kB
12. The MNIST example/4. Outlining the model.vtt
8.0 kB
2. Introduction to neural networks/22. One parameter gradient descent.vtt
7.6 kB
12. The MNIST example/9. Discuss the results and test.vtt
7.4 kB
5. TensorFlow - An introduction/6. Model output.vtt
7.0 kB
13. Business case/6. Create a class for batching.vtt
7.0 kB
2. Introduction to neural networks/24. N-parameter gradient descent.vtt
6.8 kB
5. TensorFlow - An introduction/4. Inputs, outputs, targets, weights, biases - model layout.vtt
6.6 kB
13. Business case/7. Outlining the model.vtt
6.2 kB
8. Overfitting/6. Early stopping.vtt
6.2 kB
3. Setting up the working environment/6. The Jupyter dashboard - part 2.vtt
6.1 kB
4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.vtt
6.1 kB
6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.vtt
6.0 kB
13. Business case/8. Optimizing the algorithm.vtt
5.9 kB
15. Conclusion/3. An overview of CNNs.vtt
5.8 kB
3. Setting up the working environment/2. Why Python and why Jupyter.vtt
5.7 kB
1. Welcome! Course introduction/2. What does the course cover.vtt
5.6 kB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.vtt
5.4 kB
11. Preprocessing/3. Standardization.vtt
5.4 kB
10. Gradient descent and learning rates/4. Learning rate schedules.vtt
5.4 kB
2. Introduction to neural networks/1. Introduction to neural networks.vtt
5.3 kB
8. Overfitting/1. Underfitting and overfitting.vtt
5.1 kB
2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.vtt
4.9 kB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.vtt
4.8 kB
2. Introduction to neural networks/5. Types of machine learning.vtt
4.8 kB
13. Business case/11. A comment on the homework.vtt
4.7 kB
2. Introduction to neural networks/20. Cross-entropy loss.vtt
4.7 kB
15. Conclusion/1. See how much you have learned.vtt
4.7 kB
5. TensorFlow - An introduction/1. TensorFlow outline.vtt
4.7 kB
15. Conclusion/6. An overview of non-NN approaches.vtt
4.7 kB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.vtt
4.7 kB
12. The MNIST example/6. Accuracy of prediction.vtt
4.7 kB
6. Going deeper Introduction to deep neural networks/5. Activation functions.vtt
4.6 kB
8. Overfitting/3. Training and validation.vtt
4.3 kB
10. Gradient descent and learning rates/1. Stochastic gradient descent.vtt
4.3 kB
5. TensorFlow - An introduction/5. Loss function and gradient descent - introducing optimizers.vtt
4.3 kB
11. Preprocessing/5. One-hot and binary encoding.vtt
4.3 kB
3. Setting up the working environment/4. Installing Anaconda.vtt
4.2 kB
4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.vtt
4.0 kB
4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.vtt
4.0 kB
13. Business case/3. Balancing the dataset.vtt
4.0 kB
2. Introduction to neural networks/3. Training the model.vtt
3.9 kB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.vtt
3.9 kB
8. Overfitting/5. N-fold cross validation.vtt
3.8 kB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.vtt
3.8 kB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.vtt
3.6 kB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.vtt
3.6 kB
2. Introduction to neural networks/7. The linear model.vtt
3.6 kB
6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.vtt
3.6 kB
11. Preprocessing/1. Preprocessing introduction.vtt
3.5 kB
6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.vtt
3.4 kB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.vtt
3.4 kB
15. Conclusion/5. An overview of RNNs.vtt
3.3 kB
9. Initialization/3. Xavier initialization.vtt
3.3 kB
9. Initialization/2. Types of simple initializations.vtt
3.3 kB
12. The MNIST example/2. How to tackle the MNIST.vtt
3.3 kB
14. Appendix Linear Algebra Fundamentals/5. Tensors.vtt
3.2 kB
12. The MNIST example/5. Declaring the loss and the optimization algorithm.vtt
3.2 kB
9. Initialization/1. Initialization - Introduction.vtt
3.2 kB
10. Gradient descent and learning rates/3. Momentum.vtt
3.2 kB
8. Overfitting/4. Training, validation, and test.vtt
3.2 kB
12. The MNIST example/1. The dataset.vtt
3.1 kB
5. TensorFlow - An introduction/3. Types of file formats in TensorFlow.vtt
3.1 kB
10. Gradient descent and learning rates/7. Adaptive moment estimation.vtt
3.0 kB
6. Going deeper Introduction to deep neural networks/2. What is a deep net.vtt
2.9 kB
3. Setting up the working environment/9. Installing the TensorFlow package.vtt
2.9 kB
3. Setting up the working environment/5. The Jupyter dashboard - part 1.vtt
2.8 kB
2. Introduction to neural networks/10. The linear model. Multiple inputs.vtt
2.8 kB
13. Business case/9. Interpreting the result.vtt
2.6 kB
16. Bonus lecture/1. Bonus lecture Next steps.html
2.6 kB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.vtt
2.6 kB
12. The MNIST example/7. Batching and early stopping.vtt
2.5 kB
2. Introduction to neural networks/18. L2-norm loss.vtt
2.5 kB
11. Preprocessing/4. Dealing with categorical data.vtt
2.5 kB
8. Overfitting/2. Underfitting and overfitting - classification.vtt
2.4 kB
2. Introduction to neural networks/14. Graphical representation.vtt
2.4 kB
13. Business case/10. Testing the model.vtt
2.4 kB
12. The MNIST example/10. MNIST - exercises.html
2.3 kB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.vtt
2.3 kB
15. Conclusion/2. What’s further out there in the machine and deep learning world.vtt
2.3 kB
13. Business case/2. Outlining the business case solution.vtt
2.3 kB
12. The MNIST example/11. MNIST - solutions.html
2.3 kB
6. Going deeper Introduction to deep neural networks/1. Layers.vtt
2.2 kB
12. The MNIST example/3. Importing the relevant packages.vtt
2.0 kB
5. TensorFlow - An introduction/2. TensorFlow intro.vtt
1.9 kB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.vtt
1.9 kB
2. Introduction to neural networks/16. The objective function.vtt
1.9 kB
5. TensorFlow - An introduction/7. Minimal example - Exercises.html
1.7 kB
4. Minimal example - your first machine learning algorithm/5. Minimal example - Exercises.html
1.6 kB
11. Preprocessing/2. Basic preprocessing.vtt
1.5 kB
15. Conclusion/4. How DeepMind uses deep learning.html
1.4 kB
3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.vtt
1.1 kB
2. Introduction to neural networks/9. Need Help with Linear Algebra.html
829 Bytes
7. Backpropagation. A peek into the Mathematics of Optimization/1. Backpropagation. A peek into the Mathematics of Optimization.html
539 Bytes
13. Business case/12. Final exercise.html
441 Bytes
13. Business case/5. Preprocessing exercise.html
394 Bytes
3. Setting up the working environment/11. Installing packages - solution.html
339 Bytes
3. Setting up the working environment/7. Jupyter Shortcuts.html
332 Bytes
3. Setting up the working environment/10. Installing packages - exercise.html
227 Bytes
14. Appendix Linear Algebra Fundamentals/7.1 Errors when Adding Matrices Python Notebook.html
220 Bytes
14. Appendix Linear Algebra Fundamentals/4.1 Scalars, Vectors and Matrices Python Notebook.html
181 Bytes
14. Appendix Linear Algebra Fundamentals/6.1 Addition and Subtraction Python Notebook.html
178 Bytes
12. The MNIST example/11.11 TensorFlow_MNIST_Activation_functions_Part_1_Solution.html
172 Bytes
12. The MNIST example/11.9 MNIST_Activation_functions_Part_2_Solution.html
172 Bytes
14. Appendix Linear Algebra Fundamentals/10.1 Dot Product of Matrices Python Notebook.html
171 Bytes
14. Appendix Linear Algebra Fundamentals/8.1 Transpose of a Matrix Python Notebook.html
167 Bytes
12. The MNIST example/11.10 MNIST_Learning_rate_Part_1_Solution.html
165 Bytes
12. The MNIST example/11.4 MNIST_Learning_rate_Part_2_Solution.html
165 Bytes
12. The MNIST example/11.2 MNIST_take_note_of_time_Solution.html
162 Bytes
12. The MNIST example/11.6 MNIST_Batch_size_Part_2_Solution.html
162 Bytes
12. The MNIST example/11.8 MNIST_Batch_size_Part_1_Solution.html
162 Bytes
5. TensorFlow - An introduction/7.2 TensorFlow_Minimal_Example_Exercise_2_3_Solution.html
162 Bytes
5. TensorFlow - An introduction/7.3 TensorFlow_Minimal_Example_Exercise_2_1_Solution.html
162 Bytes
5. TensorFlow - An introduction/7.6 TensorFlow_Minimal_Example_Exercise_2_2_Solution.html
162 Bytes
5. TensorFlow - An introduction/7.8 TensorFlow_Minimal_Example_Exercise_2_4_Solution.html
162 Bytes
1. Welcome! Course introduction/3. What does the course cover - Quiz.html
161 Bytes
2. Introduction to neural networks/11. The linear model. Multiple inputs - Quiz.html
161 Bytes
2. Introduction to neural networks/13. The linear model. Multiple inputs and multiple outputs - Quiz.html
161 Bytes
2. Introduction to neural networks/15. Graphical representation - Quiz.html
161 Bytes
2. Introduction to neural networks/17. The objective function - Quiz.html
161 Bytes
2. Introduction to neural networks/19. L2-norm loss - Quiz.html
161 Bytes
2. Introduction to neural networks/2. Introduction to neural networks - Quiz.html
161 Bytes
2. Introduction to neural networks/21. Cross-entropy loss - Quiz.html
161 Bytes
2. Introduction to neural networks/23. One parameter gradient descent - Quiz.html
161 Bytes
2. Introduction to neural networks/25. N-parameter gradient descent - Quiz.html
161 Bytes
2. Introduction to neural networks/4. Training the model - Quiz.html
161 Bytes
2. Introduction to neural networks/6. Types of machine learning - Quiz.html
161 Bytes
2. Introduction to neural networks/8. The linear model - Quiz.html
161 Bytes
3. Setting up the working environment/3. Why Python and why Jupyter - Quiz.html
161 Bytes
3. Setting up the working environment/8. The Jupyter dashboard - Quiz.html
161 Bytes
12. The MNIST example/11.3 Width_and_Depth_Solution.html
160 Bytes
5. TensorFlow - An introduction/7.1 TensorFlow_Minimal_Example_Exercise_1_Solution.html
160 Bytes
5. TensorFlow - An introduction/7.5 TensorFlow_Minimal_Example_Exercise_3_Solution.html
160 Bytes
5. TensorFlow - An introduction/7.7 TensorFlow_Minimal_Example_Exercise_4_Solution.html
160 Bytes
12. The MNIST example/3.1 TensorFlow_MNIST_with_comments_Part_1.html
159 Bytes
12. The MNIST example/4.1 TensorFlow_MNIST_with_comments_Part_2.html
159 Bytes
12. The MNIST example/5.1 TensorFlow_MNIST_with_comments_Part_3.html
159 Bytes
12. The MNIST example/6.1 TensorFlow_MNIST_with_comments_Part_4.html
159 Bytes
12. The MNIST example/7.1 TensorFlow_MNIST_with_comments_Part_5.html
159 Bytes
12. The MNIST example/8.1 TensorFlow_MNIST_with_comments_Part_6.html
159 Bytes
12. The MNIST example/11.5 MNIST_around_98_percent_accuracy_solution.html
157 Bytes
5. TensorFlow - An introduction/6.1 TensorFlow - Minimal example complete.html
156 Bytes
14. Appendix Linear Algebra Fundamentals/9.1 Dot Product Python Notebook.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.2 Minimal_example_Exercise_3.d. Solution.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.4 Minimal_example_Exercise_3.b. Solution.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.7 Minimal_example_Exercise_3.c. Solution.html
154 Bytes
4. Minimal example - your first machine learning algorithm/5.9 Minimal_example_Exercise_3.a. Solution.html
154 Bytes
5. TensorFlow - An introduction/3.1 TensorFlow Minimal example - Part 1.html
154 Bytes
5. TensorFlow - An introduction/4.1 TensorFlow Minimal example - Part 2.html
154 Bytes
5. TensorFlow - An introduction/5.1 TensorFlow Minimal example - Part 3.html
154 Bytes
5. TensorFlow - An introduction/7.4 TensorFlow_Minimal_Example_All_Exercises.html
154 Bytes
12. The MNIST example/9.1 TensorFlow_MNIST_with_comments.html
152 Bytes
12. The MNIST example/11.1 MNIST_Depth_Solution.html
150 Bytes
12. The MNIST example/11.7 MNIST_Width_Solution.html
150 Bytes
4. Minimal example - your first machine learning algorithm/5.1 Minimal_example_Exercise_2_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.10 Minimal_example_Exercise_6_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.3 Minimal_example_Exercise_4_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.6 Minimal_example_Exercise_1_Solution.html
149 Bytes
4. Minimal example - your first machine learning algorithm/5.8 Minimal_example_Exercise_5_Solution.html
149 Bytes
14. Appendix Linear Algebra Fundamentals/5.1 Tensors Notebook.html
148 Bytes
4. Minimal example - your first machine learning algorithm/4.1 Minimal example - part 4.html
145 Bytes
12. The MNIST example/10.1 MNIST_Exercises_All.html
144 Bytes
4. Minimal example - your first machine learning algorithm/5.5 Minimal_example_All_Exercises.html
143 Bytes
4. Minimal example - your first machine learning algorithm/1.1 Minimal example Part 1.html
136 Bytes
4. Minimal example - your first machine learning algorithm/2.1 Minimal example - part 2.html
136 Bytes
4. Minimal example - your first machine learning algorithm/3.1 Minimal example - part 3.html
136 Bytes
13. Business case/11.1 Homework exercise.html
134 Bytes
13. Business case/12.1 Homework exercise.html
134 Bytes
13. Business case/4.1 Preprocessing.html
134 Bytes
13. Business case/5.1 Preprocessing exercise.html
134 Bytes
13. Business case/6.1 Class.html
134 Bytes
13. Business case/7.1 Outlining the model.html
134 Bytes
13. Business case/8.1 Optimizing the algorithm.html
134 Bytes
13. Business case/9.1 Interpreting the result.html
134 Bytes
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
[CourseClub.ME].url
122 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>