搜索
[Tutorialsplanet.NET] Udemy - The Data Science Course 2020 Complete Data Science Bootcamp
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - The Data Science Course 2020 Complete Data Science Bootcamp
磁力链接/BT种子简介
种子哈希:
fd3652bbc4ffa7bfdb43f55d7f1121ac00b74670
文件大小:
15.31G
已经下载:
1035
次
下载速度:
极快
收录时间:
2021-03-13
最近下载:
2024-10-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:FD3652BBC4FFA7BFDB43F55D7F1121AC00B74670
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
暗网禁地
91短视频
TikTok成人版
PornHub
草榴社区
乱伦社区
最近搜索
modern times 1936
推车探花酒店约炮酷似张柏芝的颜值靓妹酥胸
uz
yuzu emulator
接机
keeping up with the joneses
mtes-126
[ivy]
闷骚的大学生
juicyyyjoss
网红大
nuit
重磅推荐!精彩依旧
电影
しまのはるか
frasier complete
onlyfans fuck
韩国+全裸
子玩到潮喷
苏畅蒸汽
魔都反差00後極品名媛李依依私密露臉性愛私密曝光女神級別後入豐臀超帶感
niji o tsukamu otoko
全视频
ai+generated+同人
transformers 3d
小蔡头喵喵
露脸+双马尾
小葡萄
极乐酒店
nadeshiko
文件列表
16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.mp4
168.3 MB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.mp4
165.5 MB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.mp4
152.2 MB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.mp4
151.4 MB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.mp4
145.0 MB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.mp4
140.8 MB
3/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
133.0 MB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.mp4
131.2 MB
56. Software Integration/5. Taking a Closer Look at APIs.mp4
121.2 MB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.mp4
117.1 MB
2/7. Continuing with BI, ML, and AI.mp4
114.3 MB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.mp4
109.1 MB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.mp4
108.6 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.mp4
108.4 MB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.mp4
107.7 MB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.mp4
104.2 MB
13. Probability - Probability in Other Fields/1. Probability in Finance.mp4
103.9 MB
35/1. Practical Example Linear Regression (Part 1).mp4
101.8 MB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.mp4
96.5 MB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.mp4
94.3 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting Acquainted with the Dataset.mp4
91.9 MB
36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.mp4
90.7 MB
9. Part 2 Probability/1. The Basic Probability Formula.mp4
90.1 MB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing the Data.mp4
88.4 MB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.mp4
88.2 MB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.mp4
86.6 MB
2/1. Data Science and Business Buzzwords Why are there so Many.mp4
85.4 MB
4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason Behind These Disciplines.mp4
85.1 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4
85.1 MB
18/3. Confidence Intervals; Population Variance Known; Z-score.mp4
82.0 MB
13. Probability - Probability in Other Fields/2. Probability in Statistics.mp4
81.0 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/6. Creating a Data Provider.mp4
80.1 MB
9. Part 2 Probability/3. Computing Expected Values.mp4
79.4 MB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.mp4
79.2 MB
22. Part 4 Introduction to Python/3. Why Python.mp4
78.7 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp4
78.2 MB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.mp4
78.1 MB
12. Probability - Distributions/1. Fundamentals of Probability Distributions.mp4
77.0 MB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.mp4
76.4 MB
15. Statistics - Descriptive Statistics/1. Types of Data.mp4
76.0 MB
37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.mp4
75.0 MB
12. Probability - Distributions/3. Types of Probability Distributions.mp4
74.5 MB
18/12. Confidence intervals. Two means. Dependent samples.mp4
73.9 MB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.mp4
72.9 MB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.mp4
72.4 MB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.mp4
72.2 MB
2/9. A Breakdown of our Data Science Infographic.mp4
71.0 MB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.mp4
69.5 MB
2/5. Business Analytics, Data Analytics, and Data Science An Introduction.mp4
67.7 MB
56. Software Integration/9. Software Integration - Explained.mp4
66.8 MB
13. Probability - Probability in Other Fields/3. Probability in Data Science.mp4
66.6 MB
17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.mp4
65.9 MB
54/9. MNIST Results and Testing.mp4
65.8 MB
1. Part 1 Introduction/2. What Does the Course Cover.mp4
65.3 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.mp4
64.9 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.mp4
64.8 MB
9. Part 2 Probability/5. Frequency.mp4
64.7 MB
17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.mp4
64.6 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).mp4
64.1 MB
56. Software Integration/7. Communication between Software Products through Text Files.mp4
63.3 MB
45/3. Digging into a Deep Net.mp4
62.3 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.mp4
62.2 MB
9. Part 2 Probability/7. Events and Their Complements.mp4
62.0 MB
52. Deep Learning - Conclusion/4. An overview of CNNs.mp4
61.7 MB
22. Part 4 Introduction to Python/1. Introduction to Programming.mp4
61.4 MB
14. Part 3 Statistics/1. Population and Sample.mp4
60.9 MB
35/8. Practical Example Linear Regression (Part 5).mp4
60.7 MB
32/1. The Linear Regression Model.mp4
60.2 MB
10. Probability - Combinatorics/11. Solving Combinations.mp4
60.1 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp4
60.1 MB
11. Probability - Bayesian Inference/7. Union of Sets.mp4
60.0 MB
18/5. Confidence Interval Clarifications.mp4
59.8 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.mp4
59.3 MB
54/4. MNIST Model Outline.mp4
59.1 MB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).mp4
58.8 MB
35/6. Practical Example Linear Regression (Part 4).mp4
58.8 MB
20. Statistics - Hypothesis Testing/10. p-value.mp4
58.6 MB
12. Probability - Distributions/13. Discrete Distributions The Poisson Distribution.mp4
58.5 MB
33/18. Dealing with Categorical Data - Dummy Variables.mp4
58.4 MB
42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.mp4
58.3 MB
62. Appendix - Additional Python Tools/5. List Comprehensions.mp4
58.2 MB
33/3. Adjusted R-Squared.mp4
57.5 MB
15. Statistics - Descriptive Statistics/3. Levels of Measurement.mp4
57.0 MB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.mp4
57.0 MB
60. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.mp4
56.9 MB
20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.mp4
56.9 MB
2/3. What is the difference between Analysis and Analytics.mp4
56.2 MB
11. Probability - Bayesian Inference/1. Sets and Events.mp4
56.1 MB
37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.mp4
56.0 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7. Business Case Model Outline.mp4
55.7 MB
59/5. Splitting the Data for Training and Testing.mp4
55.3 MB
59/8. Interpreting the Coefficients for Our Problem.mp4
54.9 MB
57. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
54.8 MB
38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.mp4
54.3 MB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.mp4
53.5 MB
49. Deep Learning - Preprocessing/3. Standardization.mp4
53.5 MB
15. Statistics - Descriptive Statistics/22. Variance.mp4
53.4 MB
20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.mp4
52.8 MB
18/1. What are Confidence Intervals.mp4
52.4 MB
11. Probability - Bayesian Inference/20. Bayes' Law.mp4
52.4 MB
17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.mp4
52.3 MB
51. Deep Learning - Business Case Example/9. Business Case Setting an Early Stopping Mechanism.mp4
52.2 MB
40. Part 6 Mathematics/5. Linear Algebra and Geometry.mp4
52.2 MB
32/13. Decomposition of Variability.mp4
52.1 MB
40. Part 6 Mathematics/15. Dot Product of Matrices.mp4
51.8 MB
34/19. Train - Test Split Explained.mp4
51.6 MB
59/12. Testing the Model We Created.mp4
51.5 MB
1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.mp4
51.4 MB
11. Probability - Bayesian Inference/18. The Multiplication Law.mp4
51.4 MB
12. Probability - Distributions/17. Continuous Distributions The Normal Distribution.mp4
50.6 MB
12. Probability - Distributions/19. Continuous Distributions The Standard Normal Distribution.mp4
50.2 MB
17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.mp4
50.2 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp4
50.1 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/4. TensorFlow Intro.mp4
50.0 MB
62. Appendix - Additional Python Tools/1. Using the .format() Method.mp4
50.0 MB
11. Probability - Bayesian Inference/3. Ways Sets Can Interact.mp4
49.7 MB
18/10. Margin of Error.mp4
49.5 MB
12. Probability - Distributions/27. Continuous Distributions The Logistic Distribution.mp4
49.3 MB
54/8. MNIST Learning.mp4
49.0 MB
62. Appendix - Additional Python Tools/4. Triple Nested For Loops.mp4
48.9 MB
35/2. Practical Example Linear Regression (Part 2).mp4
48.2 MB
11. Probability - Bayesian Inference/13. The Conditional Probability Formula.mp4
48.1 MB
59/2. Creating the Targets for the Logistic Regression.mp4
48.0 MB
15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.mp4
47.3 MB
42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.mp4
47.3 MB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.mp4
47.0 MB
32/11. How to Interpret the Regression Table.mp4
46.8 MB
39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.mp4
46.7 MB
32/8. First Regression in Python.mp4
46.7 MB
59/16. Preparing the Deployment of the Model through a Module.mp4
46.6 MB
22. Part 4 Introduction to Python/5. Why Jupyter.mp4
46.5 MB
38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.mp4
46.3 MB
20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.mp4
46.1 MB
54/6. Calculating the Accuracy of the Model.mp4
46.0 MB
10. Probability - Combinatorics/9. Solving Variations without Repetition.mp4
45.2 MB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).mp4
45.1 MB
42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.mp4
45.0 MB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.mp4
44.9 MB
10. Probability - Combinatorics/3. Permutations and How to Use Them.mp4
44.8 MB
33/13. A3 Normality and Homoscedasticity.mp4
44.8 MB
28. Python - Sequences/7. Dictionaries.mp4
43.7 MB
59/6. Fitting the Model and Assessing its Accuracy.mp4
43.7 MB
50. Deep Learning - Classifying on the MNIST Dataset/6. MNIST Preprocess the Data - Shuffle and Batch.mp4
43.5 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8. Business Case Optimization.mp4
43.5 MB
10. Probability - Combinatorics/17. Combinatorics in Real-Life The Lottery.mp4
43.3 MB
59/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
43.2 MB
32/17. R-Squared.mp4
43.0 MB
50. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.mp4
43.0 MB
57. Case Study - What's Next in the Course/3. Introducing the Data Set.mp4
42.9 MB
61. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.mp4
42.6 MB
32/7. Python Packages Installation.mp4
42.6 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp4
42.5 MB
59/10. Interpreting the Coefficients of the Logistic Regression.mp4
42.4 MB
10. Probability - Combinatorics/13. Symmetry of Combinations.mp4
42.3 MB
12. Probability - Distributions/25. Continuous Distributions The Exponential Distribution.mp4
42.2 MB
20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.mp4
42.2 MB
15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.mp4
41.7 MB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.mp4
41.7 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4
41.5 MB
59/11. Backward Elimination or How to Simplify Your Model.mp4
41.5 MB
42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.mp4
41.3 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3. The Importance of Working with a Balanced Dataset.mp4
41.3 MB
57. Case Study - What's Next in the Course/2. The Business Task.mp4
41.1 MB
34/14. Feature Scaling (Standardization).mp4
41.0 MB
59/7. Creating a Summary Table with the Coefficients and Intercept.mp4
40.8 MB
44. Deep Learning - TensorFlow 2.0 Introduction/1. How to Install TensorFlow 2.0.mp4
40.6 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4
40.6 MB
62. Appendix - Additional Python Tools/6. Anonymous (Lambda) Functions.mp4
40.4 MB
10. Probability - Combinatorics/19. A Recap of Combinatorics.mp4
40.4 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
40.4 MB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.mp4
40.3 MB
42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.mp4
40.2 MB
40. Part 6 Mathematics/13. Transpose of a Matrix.mp4
39.9 MB
28. Python - Sequences/1. Lists.mp4
39.6 MB
38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.mp4
39.5 MB
28. Python - Sequences/3. Using Methods.mp4
39.4 MB
59/13. Saving the Model and Preparing it for Deployment.mp4
39.3 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9. Basic NN Example with TF Model Output.mp4
39.2 MB
42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.mp4
39.1 MB
15. Statistics - Descriptive Statistics/17. Mean, median and mode.mp4
38.9 MB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).mp4
38.6 MB
15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.mp4
38.4 MB
20. Statistics - Hypothesis Testing/18. Test for the mean. Independent Samples (Part 2).mp4
38.2 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.mp4
38.1 MB
37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.mp4
37.9 MB
10. Probability - Combinatorics/5. Simple Operations with Factorials.mp4
37.9 MB
33/11. A2 No Endogeneity.mp4
37.4 MB
18/6. Student's T Distribution.mp4
37.2 MB
45/7. Backpropagation.mp4
36.7 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).mp4
36.6 MB
11. Probability - Bayesian Inference/15. The Law of Total Probability.mp4
36.6 MB
34/15. Feature Selection through Standardization of Weights.mp4
36.6 MB
11. Probability - Bayesian Inference/11. Dependence and Independence of Sets.mp4
36.5 MB
34/3. Simple Linear Regression with sklearn.mp4
36.5 MB
36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.mp4
36.4 MB
44. Deep Learning - TensorFlow 2.0 Introduction/6. Outlining the Model with TensorFlow 2.mp4
36.4 MB
12. Probability - Distributions/9. Discrete Distributions The Bernoulli Distribution.mp4
35.8 MB
10. Probability - Combinatorics/7. Solving Variations with Repetition.mp4
35.7 MB
20. Statistics - Hypothesis Testing/16. Test for the mean. Independent Samples (Part 1).mp4
35.6 MB
40. Part 6 Mathematics/3. Scalars and Vectors.mp4
35.5 MB
30. Python - Advanced Python Tools/1. Object Oriented Programming.mp4
35.2 MB
40. Part 6 Mathematics/1. What is a Matrix.mp4
35.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/2. TensorFlow Outline and Comparison with Other Libraries.mp4
35.1 MB
10. Probability - Combinatorics/15. Solving Combinations with Separate Sample Spaces.mp4
34.8 MB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.mp4
34.5 MB
46. Deep Learning - Overfitting/3. What is Validation.mp4
34.3 MB
40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.mp4
34.2 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8. Basic NN Example with TF Loss Function and Gradient Descent.mp4
34.1 MB
36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.mp4
33.9 MB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.mp4
33.8 MB
18/8. Confidence Intervals; Population Variance Unknown; T-score.mp4
33.8 MB
34/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
33.6 MB
33/14. A4 No Autocorrelation.mp4
33.1 MB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.mp4
32.7 MB
41. Part 7 Deep Learning/1. What to Expect from this Part.mp4
32.6 MB
46. Deep Learning - Overfitting/1. What is Overfitting.mp4
32.6 MB
34/8. Calculating the Adjusted R-Squared in sklearn.mp4
32.4 MB
28. Python - Sequences/5. List Slicing.mp4
32.3 MB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.mp4
32.1 MB
36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.mp4
32.0 MB
51. Deep Learning - Business Case Example/3. Business Case Balancing the Dataset.mp4
31.9 MB
44. Deep Learning - TensorFlow 2.0 Introduction/7. Interpreting the Result and Extracting the Weights and Bias.mp4
31.7 MB
38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.mp4
31.6 MB
25. Python - Other Python Operators/3. Logical and Identity Operators.mp4
31.5 MB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.mp4
31.4 MB
29. Python - Iterations/8. How to Iterate over Dictionaries.mp4
31.1 MB
39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.mp4
31.1 MB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).mp4
31.0 MB
45/2. What is a Deep Net.mp4
31.0 MB
34/10. Feature Selection (F-regression).mp4
31.0 MB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.mp4
31.0 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4
30.9 MB
28. Python - Sequences/6. Tuples.mp4
30.9 MB
62. Appendix - Additional Python Tools/3. Introduction to Nested For Loops.mp4
30.9 MB
15. Statistics - Descriptive Statistics/30. Correlation Coefficient.mp4
30.8 MB
48/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
30.5 MB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.mp4
30.5 MB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4
30.5 MB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.mp4
30.4 MB
18/14. Confidence intervals. Two means. Independent Samples (Part 1).mp4
30.2 MB
33/16. A5 No Multicollinearity.mp4
30.1 MB
42. Deep Learning - Introduction to Neural Networks/3. Training the Model.mp4
30.1 MB
48/1. Stochastic Gradient Descent.mp4
30.1 MB
42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).mp4
29.8 MB
29. Python - Iterations/3. While Loops and Incrementing.mp4
29.8 MB
32/15. What is the OLS.mp4
29.7 MB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Outline the Model.mp4
29.6 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp4
29.3 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.mp4
29.2 MB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.mp4
29.1 MB
29. Python - Iterations/6. Conditional Statements and Loops.mp4
29.1 MB
45/4. Non-Linearities and their Purpose.mp4
29.0 MB
59/1. Exploring the Problem with a Machine Learning Mindset.mp4
28.9 MB
15. Statistics - Descriptive Statistics/27. Covariance.mp4
28.8 MB
38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.mp4
28.6 MB
34/1. What is sklearn and How is it Different from Other Packages.mp4
28.6 MB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.mp4
28.5 MB
36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.mp4
28.4 MB
11. Probability - Bayesian Inference/16. The Additive Rule.mp4
28.3 MB
11. Probability - Bayesian Inference/5. Intersection of Sets.mp4
28.3 MB
18/16. Confidence intervals. Two means. Independent Samples (Part 2).mp4
28.1 MB
40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.mp4
28.0 MB
48/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
27.6 MB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.mp4
27.6 MB
34/16. Predicting with the Standardized Coefficients.mp4
27.2 MB
45/6. Activation Functions Softmax Activation.mp4
27.2 MB
54/5. MNIST Loss and Optimization Algorithm.mp4
27.1 MB
15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.mp4
27.1 MB
29. Python - Iterations/4. Lists with the range() Function.mp4
27.1 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9. Business Case Interpretation.mp4
27.0 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4
26.9 MB
60. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.mp4
26.7 MB
11. Probability - Bayesian Inference/9. Mutually Exclusive Sets.mp4
26.6 MB
52. Deep Learning - Conclusion/5. An Overview of RNNs.mp4
26.5 MB
46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.mp4
26.4 MB
42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.mp4
26.3 MB
45/5. Activation Functions.mp4
26.3 MB
46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.mp4
26.3 MB
26. Python - Conditional Statements/4. The ELIF Statement.mp4
26.3 MB
33/20. Making Predictions with the Linear Regression.mp4
25.9 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).mp4
25.6 MB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.mp4
25.6 MB
46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.mp4
25.4 MB
23. Python - Variables and Data Types/5. Python Strings.mp4
25.3 MB
40. Part 6 Mathematics/14. Dot Product.mp4
25.2 MB
35/4. Practical Example Linear Regression (Part 3).mp4
24.8 MB
29. Python - Iterations/1. For Loops.mp4
24.7 MB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.mp4
24.4 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.mp4
24.3 MB
36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.mp4
24.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/8. Customizing a TensorFlow 2 Model.mp4
24.0 MB
17. Statistics - Inferential Statistics Fundamentals/11. Standard error.mp4
23.9 MB
12. Probability - Distributions/5. Characteristics of Discrete Distributions.mp4
23.8 MB
42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.mp4
23.8 MB
54/2. MNIST How to Tackle the MNIST.mp4
23.7 MB
40. Part 6 Mathematics/8. What is a Tensor.mp4
23.6 MB
17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.mp4
23.6 MB
62. Appendix - Additional Python Tools/2. Iterating Over Range Objects.mp4
23.6 MB
48/7. Adam (Adaptive Moment Estimation).mp4
23.4 MB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.mp4
23.4 MB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.mp4
23.1 MB
27. Python - Python Functions/7. Built-in Functions in Python.mp4
23.1 MB
44. Deep Learning - TensorFlow 2.0 Introduction/3. TensorFlow 1 vs TensorFlow 2.mp4
23.1 MB
33/7. OLS Assumptions.mp4
22.9 MB
47. Deep Learning - Initialization/1. What is Initialization.mp4
22.8 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp4
22.7 MB
33/1. Multiple Linear Regression.mp4
22.6 MB
38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.mp4
22.3 MB
46. Deep Learning - Overfitting/5. N-Fold Cross Validation.mp4
21.7 MB
59/4. Standardizing the Data.mp4
21.6 MB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).mp4
21.6 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6. Types of File Formats, supporting Tensors.mp4
21.3 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.mp4
21.2 MB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.mp4
21.1 MB
34/7. Multiple Linear Regression with sklearn.mp4
21.1 MB
18/18. Confidence intervals. Two means. Independent Samples (Part 3).mp4
20.9 MB
30. Python - Advanced Python Tools/7. Importing Modules in Python.mp4
20.9 MB
45/8. Backpropagation Picture.mp4
20.4 MB
34/2. How are we Going to Approach this Section.mp4
20.4 MB
15. Statistics - Descriptive Statistics/19. Skewness.mp4
20.3 MB
24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.mp4
19.8 MB
54/3. MNIST Relevant Packages.mp4
19.8 MB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.mp4
19.6 MB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.mp4
19.5 MB
27. Python - Python Functions/2. How to Create a Function with a Parameter.mp4
19.0 MB
30. Python - Advanced Python Tools/5. What is the Standard Library.mp4
18.9 MB
42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.mp4
18.8 MB
54/1. MNIST What is the MNIST Dataset.mp4
18.7 MB
51. Deep Learning - Business Case Example/6. Business Case Load the Preprocessed Data.mp4
18.4 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5. Actual Introduction to TensorFlow.mp4
18.3 MB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.mp4
18.2 MB
47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
18.0 MB
36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.mp4
17.9 MB
23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.mp4
17.9 MB
34/18. Underfitting and Overfitting.mp4
17.8 MB
59/3. Selecting the Inputs for the Logistic Regression.mp4
17.6 MB
48/3. Momentum.mp4
17.2 MB
33/6. Test for Significance of the Model (F-Test).mp4
17.2 MB
44. Deep Learning - TensorFlow 2.0 Introduction/5. Types of File Formats Supporting TensorFlow.mp4
17.2 MB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Importing the Relevant Packages and Loading the Data.mp4
17.1 MB
10. Probability - Combinatorics/1. Fundamentals of Combinatorics.mp4
17.0 MB
27. Python - Python Functions/5. Conditional Statements and Functions.mp4
16.4 MB
17. Statistics - Inferential Statistics Fundamentals/1. Introduction.mp4
16.2 MB
32/3. Correlation vs Regression.mp4
15.5 MB
37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.mp4
15.3 MB
47. Deep Learning - Initialization/2. Types of Simple Initializations.mp4
15.0 MB
23. Python - Variables and Data Types/1. Variables.mp4
14.8 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp4
14.7 MB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Select the Loss and the Optimizer.mp4
14.6 MB
22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.mp4
14.5 MB
15. Statistics - Descriptive Statistics/11. The Histogram.mp4
14.4 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp4
14.4 MB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST The Dataset.mp4
14.0 MB
54/7. MNIST Batching and Early Stopping.mp4
13.5 MB
33/9. A1 Linearity.mp4
13.2 MB
45/1. What is a Layer.mp4
13.1 MB
34/12. Creating a Summary Table with P-values.mp4
12.9 MB
32/10. Using Seaborn for Graphs.mp4
12.8 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/2. Business Case Outlining the Solution.mp4
12.8 MB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.mp4
12.4 MB
53. Appendix Deep Learning - TensorFlow 1 Introduction/2. How to Install TensorFlow 1.mp4
11.9 MB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.mp4
11.8 MB
40. Part 6 Mathematics/12. Errors when Adding Matrices.mp4
11.7 MB
27. Python - Python Functions/3. Defining a Function in Python - Part II.mp4
11.7 MB
48/2. Problems with Gradient Descent.mp4
11.6 MB
26. Python - Conditional Statements/3. The ELSE Statement.mp4
11.4 MB
26. Python - Conditional Statements/1. The IF Statement.mp4
11.3 MB
51. Deep Learning - Business Case Example/11. Business Case Testing the Model.mp4
11.3 MB
25. Python - Other Python Operators/1. Comparison Operators.mp4
10.7 MB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.mp4
10.4 MB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.mp4
10.0 MB
48/5. Learning Rate Schedules Visualized.mp4
9.6 MB
26. Python - Conditional Statements/5. A Note on Boolean Values.mp4
9.3 MB
12. Probability - Distributions/29.3 FIFA19 (post).csv
9.1 MB
12. Probability - Distributions/29.4 FIFA19.csv
9.1 MB
30. Python - Advanced Python Tools/3. Modules and Packages.mp4
8.9 MB
27. Python - Python Functions/4. How to Use a Function within a Function.mp4
8.5 MB
58. Case Study - Preprocessing the 'Absenteeism_data'/29.3 Absenteeism Exercise - Preprocessing LECTURES.ipynb
8.0 MB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.mp4
7.7 MB
2/7.2 365_DataScience.png
7.3 MB
2/9.1 365_DataScience.png
7.3 MB
44. Deep Learning - TensorFlow 2.0 Introduction/4. A Note on TensorFlow 2 Syntax.mp4
7.1 MB
27. Python - Python Functions/1. Defining a Function in Python.mp4
6.6 MB
27. Python - Python Functions/6. Functions Containing a Few Arguments.mp4
6.3 MB
24. Python - Basic Python Syntax/3. The Double Equality Sign.mp4
6.3 MB
24. Python - Basic Python Syntax/10. Indexing Elements.mp4
6.2 MB
24. Python - Basic Python Syntax/12. Structuring with Indentation.mp4
5.7 MB
32/5. Geometrical Representation of the Linear Regression Model.mp4
5.4 MB
24. Python - Basic Python Syntax/7. Add Comments.mp4
4.9 MB
24. Python - Basic Python Syntax/5. How to Reassign Values.mp4
4.2 MB
24. Python - Basic Python Syntax/9. Understanding Line Continuation.mp4
2.5 MB
23. Python - Variables and Data Types/1.1 Python Introduction - Course Notes.pdf
2.1 MB
19. Statistics - Practical Example Inferential Statistics/2.2 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
1.9 MB
19. Statistics - Practical Example Inferential Statistics/1.1 3.17. Practical example. Confidence intervals_lesson.xlsx
1.8 MB
19. Statistics - Practical Example Inferential Statistics/2.1 3.17.Practical-example.Confidence-intervals-exercise.xlsx
1.8 MB
20. Statistics - Hypothesis Testing/10.1 Online p-value calculator.pdf
1.2 MB
45/1.1 Course Notes - Section 6.pdf
958.9 kB
45/2.1 Course Notes - Section 6.pdf
958.9 kB
11. Probability - Bayesian Inference/22.2 CDS_2017-2018 Hamilton.pdf
865.6 kB
35/8.3 sklearn - Linear Regression - Practical Example (Part 5)_with_comments.ipynb
728.1 kB
51. Deep Learning - Business Case Example/1.1 Audiobooks_data.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1.1 Audiobooks_data.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11.1 Audiobooks_data.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/12.1 Audiobooks_data.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3.1 Audiobooks-data.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4.3 Audiobooks_data.csv
727.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/5.3 Audiobooks_data.csv
727.8 kB
35/8.1 sklearn - Linear Regression - Practical Example (Part 5).ipynb
715.1 kB
20. Statistics - Hypothesis Testing/1.1 Course notes_hypothesis_testing.pdf
672.2 kB
20. Statistics - Hypothesis Testing/4.1 Course notes_hypothesis_testing.pdf
672.2 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.1 Shortcuts-for-Jupyter.pdf
634.0 kB
44. Deep Learning - TensorFlow 2.0 Introduction/1.1 Shortcuts-for-Jupyter.pdf
634.0 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5.1 Shortcuts-for-Jupyter.pdf
634.0 kB
42. Deep Learning - Introduction to Neural Networks/3.1 Course Notes - Section 2.pdf
602.2 kB
42. Deep Learning - Introduction to Neural Networks/1.1 Course Notes - Section 2.pdf
592.0 kB
14. Part 3 Statistics/1.1 Course notes_descriptive_statistics.pdf
493.8 kB
15. Statistics - Descriptive Statistics/1.1 Course notes_descriptive_statistics.pdf
493.8 kB
12. Probability - Distributions/1.1 Course Notes - Probability Distributions.pdf
475.1 kB
35/6.3 sklearn - Linear Regression - Practical Example (Part 4)_with_comments.ipynb
417.4 kB
35/6.1 sklearn - Linear Regression - Practical Example (Part 4).ipynb
406.8 kB
11. Probability - Bayesian Inference/1.1 Course Notes - Bayesian Inference.pdf
395.3 kB
17. Statistics - Inferential Statistics Fundamentals/1.1 Course notes_inferential statistics.pdf
391.5 kB
17. Statistics - Inferential Statistics Fundamentals/2.1 Course notes_inferential statistics.pdf
391.5 kB
9. Part 2 Probability/1.1 Course Notes - Basic Probability.pdf
380.0 kB
35/5.1 sklearn - Dummies and VIF - Exercise Solution.ipynb
379.1 kB
35/4.2 sklearn - Linear Regression - Practical Example (Part 3)_with_comments.ipynb
359.9 kB
35/5.3 sklearn - Dummies and VIF - Exercise.ipynb
352.9 kB
12. Probability - Distributions/15.1 Solving Integrals.pdf
352.1 kB
35/4.1 sklearn - Linear Regression - Practical Example (Part 3).ipynb
351.8 kB
35/2.1 sklearn - Linear Regression - Practical Example (Part 2)_with_comments.ipynb
343.7 kB
36. Advanced Statistical Methods - Logistic Regression/1.1 Course_Notes_Logistic_Regression.pdf
343.2 kB
36. Advanced Statistical Methods - Logistic Regression/2.4 Course_Notes_Logistic_Regression.pdf
343.2 kB
35/2.2 sklearn - Linear Regression - Practical Example (Part 2).ipynb
336.6 kB
2/5.1 365_DataScience_Diagram.pdf
330.8 kB
2/7.1 365_DataScience_Diagram.pdf
330.8 kB
13. Probability - Probability in Other Fields/3.1 Probability Cheat Sheet.pdf
328.0 kB
31. Part 5 Advanced Statistical Methods in Python/1.1 Course notes_regression_analysis.pdf
319.7 kB
32/1.1 Course notes_regression_analysis.pdf
319.7 kB
1. Part 1 Introduction/3.2 FAQ_The_Data_Science_Course.pdf
313.4 kB
15. Statistics - Descriptive Statistics/13.1 Statistics - PDF with Excel Solutions that don't visualize properly.pdf
296.1 kB
15. Statistics - Descriptive Statistics/7.2 Statistics - PDF with Excel Solutions that don't visualize properly.pdf
296.1 kB
10. Probability - Combinatorics/20.2 Additional Exercises Combinatorics Solutions.pdf
251.6 kB
35/5.2 1.04. Real-life example.csv
235.3 kB
10. Probability - Combinatorics/1.1 Course Notes - Combinatorics.pdf
231.5 kB
35/1.3 1.04. Real-life example.csv
225.1 kB
35/2.3 1.04. Real-life example.csv
225.1 kB
35/6.2 1.04. Real-life example.csv
225.1 kB
35/8.2 1.04. Real-life example.csv
225.1 kB
37. Advanced Statistical Methods - Cluster Analysis/1.1 Course_Notes_Cluster_Analysis.pdf
213.7 kB
37. Advanced Statistical Methods - Cluster Analysis/2.1 Course_Notes_Cluster_Analysis.pdf
213.7 kB
10. Probability - Combinatorics/11.1 Combinations With Repetition.pdf
212.4 kB
13. Probability - Probability in Other Fields/1.2 Probability in Finance Solutions.pdf
188.9 kB
45/9.1 Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
186.8 kB
35/1.1 sklearn - Linear Regression - Practical Example (Part 1)_with_comments.ipynb
175.5 kB
35/1.2 sklearn - Linear Regression - Practical Example (Part 1).ipynb
170.9 kB
16. Statistics - Practical Example Descriptive Statistics/1.1 2.13. Practical example. Descriptive statistics_lesson.xlsx
150.0 kB
16. Statistics - Practical Example Descriptive Statistics/2.1 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
149.9 kB
12. Probability - Distributions/13.1 Poisson - Expected Value and Variance.pdf
149.5 kB
12. Probability - Distributions/17.1 Normal Distribution - Exp and Var.pdf
147.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.1 data_preprocessing_homework.pdf
137.7 kB
16. Statistics - Practical Example Descriptive Statistics/2.2 2.13.Practical-example.Descriptive-statistics-exercise.xlsx
123.2 kB
36. Advanced Statistical Methods - Logistic Regression/16.4 Testing the Model - Solution.ipynb
113.8 kB
13. Probability - Probability in Other Fields/1.1 Probability in Finance Homework.pdf
113.3 kB
10. Probability - Combinatorics/20.1 Additional Exercises Combinatorics.pdf
109.1 kB
10. Probability - Combinatorics/13.1 Symmetry Explained.pdf
97.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9.5 TensorFlow_Minimal_Example_Exercise_3_Solution.ipynb
86.5 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.8 Minimal_example_Exercise_3.d. Solution.ipynb
86.2 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9.1 TensorFlow_Minimal_Example_Exercise_2_1_Solution.ipynb
85.7 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9.3 TensorFlow_Minimal_example_All_exercises.ipynb
85.6 kB
44. Deep Learning - TensorFlow 2.0 Introduction/8.2 TensorFlow_Minimal_example_complete_with_comments.ipynb
84.3 kB
36. Advanced Statistical Methods - Logistic Regression/13.2 Calculating the Accuracy of the Model - Solution.ipynb
83.2 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9.2 TensorFlow_Minimal_Example_Exercise_2_2_Solution.ipynb
79.4 kB
44. Deep Learning - TensorFlow 2.0 Introduction/8.1 TensorFlow_Minimal_example_complete.ipynb
78.7 kB
44. Deep Learning - TensorFlow 2.0 Introduction/7.1 TensorFlow_Minimal_example_Part3.ipynb
78.4 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.11 Minimal_example_Exercise_3.c. Solution.ipynb
71.8 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.2 Minimal_example_Exercise_1_Solution.ipynb
70.7 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.3 Minimal_example_Exercise_5_Solution.ipynb
70.5 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.6 Minimal_example_Exercise_3.a. Solution.ipynb
69.5 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.4 Minimal_example_Exercise_3.b. Solution.ipynb
69.3 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.5 Minimal_example_Exercise_4_Solution.ipynb
68.1 kB
60. Case Study - Loading the 'absenteeism_module'/1.4 Absenteeism Exercise - Integration.ipynb
63.8 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.1 Minimal_example_Exercise_6_Solution.ipynb
63.2 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.9 Minimal_example_Exercise_6.ipynb
63.2 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.7 Minimal_example_Exercise_2_Solution.ipynb
62.9 kB
21. Statistics - Practical Example Hypothesis Testing/1.1 4.10.Hypothesis-testing-section-practical-example.xlsx
53.1 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.5 TensorFlow_Minimal_Example_Exercise_2_3_Solution.ipynb
51.2 kB
21. Statistics - Practical Example Hypothesis Testing/2.1 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
45.3 kB
21. Statistics - Practical Example Hypothesis Testing/2.2 4.10.+Hypothesis+testing+section_practical+example_exercise.xlsx
44.7 kB
42. Deep Learning - Introduction to Neural Networks/21.1 GD-function-example.xlsx
43.4 kB
15. Statistics - Descriptive Statistics/7.3 2.3. Categorical variables. Visualization techniques_exercise_solution.xlsx
42.1 kB
15. Statistics - Descriptive Statistics/16.1 2.6. Cross table and scatter plot_exercise_solution.xlsx
41.4 kB
15. Statistics - Descriptive Statistics/19.1 2.8. Skewness_lesson.xlsx
35.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.2 Absenteeism_data.csv
32.8 kB
15. Statistics - Descriptive Statistics/5.1 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
31.5 kB
11. Probability - Bayesian Inference/22.3 Bayesian Homework - Solutions.pdf
31.1 kB
34/16.2 sklearn - Making Predictions with the Standardized Coefficients.ipynb
30.5 kB
15. Statistics - Descriptive Statistics/29.1 2.11. Covariance_exercise_solution.xlsx
30.2 kB
15. Statistics - Descriptive Statistics/32.2 2.12. Correlation_exercise_solution.xlsx
30.2 kB
15. Statistics - Descriptive Statistics/32.1 2.12. Correlation_exercise.xlsx
30.0 kB
59/1.1 Absenteeism_preprocessed.csv
29.8 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1.3 df_preprocessed.csv
29.8 kB
34/4.3 sklearn - Simple Linear Regression_with_comments.ipynb
29.0 kB
34/6.1 sklearn - Simple Linear Regression_with_comments.ipynb
29.0 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9.4 TensorFlow_Minimal_example_Exercise_1_Solution.ipynb
28.6 kB
11. Probability - Bayesian Inference/22.1 Bayesian Homework .pdf
27.9 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.2 TensorFlow_Minimal_Example_Exercise_4_Solution.ipynb
27.6 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.7 TensorFlow_Minimal_Example_Exercise_3_Solution.ipynb
27.4 kB
15. Statistics - Descriptive Statistics/14.1 2.6. Cross table and scatter plot.xlsx
26.7 kB
34/4.2 sklearn - Simple Linear Regression.ipynb
26.7 kB
34/6.2 sklearn - Simple Linear Regression.ipynb
26.7 kB
18/3.1 3.9.The-z-table.xlsx
26.2 kB
18/4.3 3.9.The-z-table.xlsx
26.2 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.3 TensorFlow_Minimal_Example_Exercise_2_1_Solution.ipynb
26.2 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.8 TensorFlow_Minimal_Example_Exercise_2_2_Solution.ipynb
26.1 kB
62. Appendix - Additional Python Tools/1.2 Additional-Python-Tools-Solutions.ipynb
26.1 kB
62. Appendix - Additional Python Tools/6.3 Additional-Python-Tools-Solutions.ipynb
26.1 kB
15. Statistics - Descriptive Statistics/27.1 2.11. Covariance_lesson.xlsx
25.5 kB
17. Statistics - Inferential Statistics Fundamentals/8.2 3.4.Standard-normal-distribution-exercise-solution.xlsx
24.6 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.6 TensorFlow_Minimal_Example_Exercise_1_Solution.ipynb
24.2 kB
34/16.3 sklearn - Making Predictions with the Standardized Coefficients_with_comments.ipynb
22.6 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.1 TensorFlow_Minimal_Example_Exercise_2_4_Solution.ipynb
22.3 kB
1. Part 1 Introduction/3. Download All Resources and Important FAQ.html
21.9 kB
16. Statistics - Practical Example Descriptive Statistics/1. Practical Example Descriptive Statistics.srt
21.3 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.3 8. TensorFlow_MNIST_Learning_rate_Part_1_Solution.ipynb
21.1 kB
14. Part 3 Statistics/1.2 Statistics Glossary.xlsx
20.8 kB
15. Statistics - Descriptive Statistics/29.2 2.11. Covariance_exercise.xlsx
20.7 kB
12. Probability - Distributions/29.6 Daily Views (post).xlsx
20.7 kB
15. Statistics - Descriptive Statistics/1.2 Glossary.xlsx
20.4 kB
12. Probability - Distributions/29. A Practical Example of Probability Distributions.srt
20.4 kB
15. Statistics - Descriptive Statistics/21.1 2.8. Skewness_exercise_solution.xlsx
20.2 kB
51. Deep Learning - Business Case Example/8.1 TensorFlow_Audiobooks_Machine_Learning_Part2_with_comments.ipynb
20.2 kB
36. Advanced Statistical Methods - Logistic Regression/11.3 Bank_data.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/13.1 Bank_data.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/16.1 Bank_data.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/8.3 Bank_data.csv
20.0 kB
17. Statistics - Inferential Statistics Fundamentals/2.2 3.2. What is a distribution_lesson.xlsx
19.9 kB
11. Probability - Bayesian Inference/22. A Practical Example of Bayesian Inference.srt
19.8 kB
15. Statistics - Descriptive Statistics/11.1 2.5. The Histogram_lesson.xlsx
19.1 kB
33/19.1 Multiple Linear Regression with Dummies Exercise Solution.ipynb
18.4 kB
39. Advanced Statistical Methods - Other Types of Clustering/3.1 Heatmaps_with_comments.ipynb
18.1 kB
54/11.3 TensorFlow_MNIST_around_98_percent_accuracy.ipynb
18.1 kB
15. Statistics - Descriptive Statistics/13.2 2.5.The-Histogram-exercise-solution.xlsx
17.5 kB
54/11.5 3. TensorFlow_MNIST_Width_and_Depth_Solution.ipynb
17.2 kB
34/15.3 SKLEAR~1.IPY
17.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.11 TensorFlow_MNIST_All_Exercises.ipynb
17.1 kB
34/12.1 sklearn - Multiple Linear Regression Summary Table_with_comments.ipynb
17.0 kB
34/17.3 sklearn - Feature Scaling Exercise Solution.ipynb
16.7 kB
15. Statistics - Descriptive Statistics/16.2 2.6. Cross table and scatter plot_exercise.xlsx
16.7 kB
18/8.2 3.11. The t-table.xlsx
16.2 kB
18/9.2 3.11.The-t-table.xlsx
16.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.10 9. TensorFlow_MNIST_Learning_rate_Part_2_Solution.ipynb
16.2 kB
12. Probability - Distributions/29.5 Customers_Membership (post).xlsx
16.0 kB
15. Statistics - Descriptive Statistics/13.3 2.5.The-Histogram-exercise.xlsx
15.9 kB
54/10.1 TensorFlow_MNIST_Exercises_All.ipynb
15.8 kB
34/13.1 sklearn - Multiple Linear Regression Exercise Solution.ipynb
15.8 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.4 2. TensorFlow_MNIST_Depth_Solution.ipynb
15.7 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.1 3. TensorFlow_MNIST_Width_and_Depth_Solution.ipynb
15.7 kB
38. Advanced Statistical Methods - K-Means Clustering/15.2 Species Segmentation with Cluster Analysis Part 2 - Solution.ipynb
15.7 kB
15. Statistics - Descriptive Statistics/7.1 2.3. Categorical variables. Visualization techniques_exercise.xlsx
15.6 kB
54/11.8 9. TensorFlow_MNIST_Learning_rate_Part_2_Solution.ipynb
15.6 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.6 7. TensorFlow_MNIST_Batch_size_Part_2_Solution.ipynb
15.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.7 6. TensorFlow_MNIST_Batch_size_Part_1_Solution.ipynb
15.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.2 4. TensorFlow_MNIST_Activation_functions_Part_1_Solution.ipynb
15.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.8 TensorFlow_MNIST_around_98_percent_accuracy.ipynb
15.4 kB
34/15.2 sklearn - Feature Selection through Feature Scaling (Standardization) - Part 2.ipynb
15.3 kB
54/11.1 2. TensorFlow_MNIST_Depth_Solution.ipynb
15.2 kB
35/1. Practical Example Linear Regression (Part 1).srt
15.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.9 1. TensorFlow_MNIST_Width_Solution.ipynb
15.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/11.5 5. TensorFlow_MNIST_Activation_functions_Part_2_Solution.ipynb
15.1 kB
20. Statistics - Hypothesis Testing/12.1 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
14.9 kB
50. Deep Learning - Classifying on the MNIST Dataset/12.2 TensorFlow_MNIST_complete_with_comments.ipynb
14.9 kB
20. Statistics - Hypothesis Testing/15.2 4.7. Test for the mean. Dependent samples_exercise_solution.xlsx
14.7 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11.3 TensorFlow_Audiobooks_Machine_learning_Homework.ipynb
14.7 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/12.3 TensorFlow_Audiobooks_Machine_learning_Homework.ipynb
14.7 kB
54/11.9 4. TensorFlow_MNIST_Activation_functions_Part_1_Solution.ipynb
14.7 kB
54/11.2 6. TensorFlow_MNIST_Batch_size_Part_1_Solution.ipynb
14.6 kB
18/13.2 3.13. Confidence intervals. Two means. Dependent samples_exercise_solution.xlsx
14.6 kB
54/11.6 7. TensorFlow_MNIST_Batch_size_Part_2_Solution.ipynb
14.5 kB
54/11.10 8. TensorFlow_MNIST_Learning_rate_Part_1_Solution.ipynb
14.4 kB
54/11.11 1. TensorFlow_MNIST_Width_Solution.ipynb
14.3 kB
54/11.4 0. TensorFlow_MNIST_take_note_of_time_Solution.ipynb
14.3 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10.4 TensorFlow_Minimal_Example_All_Exercises.ipynb
14.3 kB
10. Probability - Combinatorics/20. A Practical Example of Combinatorics.srt
14.3 kB
54/11.7 5. TensorFlow_MNIST_Activation_functions_Part_2_Solution.ipynb
14.3 kB
18/13.1 3.13. Confidence intervals. Two means. Dependent samples_exercise.xlsx
14.1 kB
34/12.3 sklearn - Multiple Linear Regression Summary Table.ipynb
14.0 kB
19. Statistics - Practical Example Inferential Statistics/1. Practical Example Inferential Statistics.srt
14.0 kB
62. Appendix - Additional Python Tools/1.3 Additional-Python-Tools-Lectures.ipynb
13.8 kB
62. Appendix - Additional Python Tools/6.1 Additional-Python-Tools-Lectures.ipynb
13.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4. Business Case Preprocessing.srt
13.8 kB
33/5.2 Multiple Linear Regression Exercise Solution.ipynb
13.7 kB
15. Statistics - Descriptive Statistics/10.1 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
13.5 kB
54/9.1 12.9. TensorFlow_MNIST_with_comments.ipynb
13.3 kB
34/10.3 sklearn - Feature Selection with F-regression_with_comments.ipynb
13.3 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5.10 Minimal_example_All_Exercises.ipynb
13.2 kB
34/14.2 SKLEAR~1.IPY
13.2 kB
20. Statistics - Hypothesis Testing/15.1 4.7. Test for the mean. Dependent samples_exercise.xlsx
13.1 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8.2 TensorFlow_Audiobooks_optimizing_the_algorithm_with_comments.ipynb
13.0 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9.1 TensorFlow_Audiobooks_optimizing_the_algorithm_with_comments.ipynb
13.0 kB
34/11.1 sklearn - How to properly include p-values.ipynb
13.0 kB
20. Statistics - Hypothesis Testing/13.1 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
12.9 kB
15. Statistics - Descriptive Statistics/26.2 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
12.9 kB
50. Deep Learning - Classifying on the MNIST Dataset/10.1 TensorFlow_MNIST_Part6_with_comments.ipynb
12.8 kB
62. Appendix - Additional Python Tools/5. List Comprehensions.srt
12.6 kB
62. Appendix - Additional Python Tools/1. Using the .format() Method.srt
12.6 kB
51. Deep Learning - Business Case Example/4. Business Case Preprocessing the Data.srt
12.6 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9.1 5.6. TensorFlow_Minimal_example_complete.ipynb
12.4 kB
17. Statistics - Inferential Statistics Fundamentals/8.1 3.4.Standard-normal-distribution-exercise.xlsx
12.3 kB
51. Deep Learning - Business Case Example/11.1 TensorFlow_Audiobooks_Machine_Learning_with_comments.ipynb
12.2 kB
51. Deep Learning - Business Case Example/12.1 TensorFlow_Audiobooks_Machine_Learning_with_comments.ipynb
12.2 kB
2/7. Continuing with BI, ML, and AI.srt
12.2 kB
40. Part 6 Mathematics/16. Why is Linear Algebra Useful.srt
12.1 kB
34/14.3 sklearn - Feature Selection through Feature Scaling (Standardization) - Part 1.ipynb
12.0 kB
36. Advanced Statistical Methods - Logistic Regression/12.2 Accuracy_with_comments.ipynb
12.0 kB
15. Statistics - Descriptive Statistics/26.1 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
11.9 kB
54/8.1 12.8. TensorFlow_MNIST_with_comments_Part_6.ipynb
11.8 kB
35/6. Practical Example Linear Regression (Part 4).srt
11.8 kB
15. Statistics - Descriptive Statistics/8.1 2.4. Numerical variables. Frequency distribution table_lesson.xlsx
11.7 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4.1 Minimal_example_Part_4_Complete.ipynb
11.7 kB
20. Statistics - Hypothesis Testing/20.2 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
11.7 kB
62. Appendix - Additional Python Tools/1.1 Additional-Python-Tools-Exercises.ipynb
11.6 kB
62. Appendix - Additional Python Tools/6.2 Additional-Python-Tools-Exercises.ipynb
11.6 kB
15. Statistics - Descriptive Statistics/18.1 2.7. Mean, median and mode_exercise_solution.xlsx
11.6 kB
20. Statistics - Hypothesis Testing/13.2 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
11.6 kB
20. Statistics - Hypothesis Testing/17.1 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
11.5 kB
20. Statistics - Hypothesis Testing/9.1 4.4. Test for the mean. Population variance known_exercise_solution.xlsx
11.5 kB
18/3.2 3.9. Population variance known, z-score_lesson.xlsx
11.5 kB
51. Deep Learning - Business Case Example/4.1 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb
11.5 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11.2 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb
11.5 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/12.2 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb
11.5 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4.2 TensorFlow_Audiobooks_Preprocessing_with_comments.ipynb
11.5 kB
18/4.1 3.9. Population variance known, z-score_exercise_solution.xlsx
11.4 kB
18/9.3 3.11. Population variance unknown, t-score_exercise_solution.xlsx
11.4 kB
15. Statistics - Descriptive Statistics/23.2 2.9. Variance_exercise_solution.xlsx
11.3 kB
20. Statistics - Hypothesis Testing/9.2 4.4. Test for the mean. Population variance known_exercise.xlsx
11.3 kB
50. Deep Learning - Classifying on the MNIST Dataset/9.1 TensorFlow_MNIST_Part5_with_comments.ipynb
11.2 kB
5. The Field of Data Science - Popular Data Science Techniques/10. Techniques for Working with Traditional Methods.srt
11.2 kB
15. Statistics - Descriptive Statistics/24.1 2.10. Standard deviation and coefficient of variation_lesson.xlsx
11.2 kB
20. Statistics - Hypothesis Testing/8.1 4.4. Test for the mean. Population variance known_lesson.xlsx
11.2 kB
24. Python - Basic Python Syntax/12.1 Structure Your Code with Indentation - Lecture_Py3.ipynb
11.2 kB
15. Statistics - Descriptive Statistics/18.2 2.7. Mean, median and mode_exercise.xlsx
11.1 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/4. Basic NN Example (Part 4).srt
11.1 kB
18/4.2 3.9. Population variance known, z-score_exercise.xlsx
11.1 kB
15. Statistics - Descriptive Statistics/23.1 2.9. Variance_exercise.xlsx
11.1 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/1. Business Case Getting Acquainted with the Dataset.srt
11.0 kB
18/8.1 3.11. Population variance unknown, t-score_lesson.xlsx
11.0 kB
20. Statistics - Hypothesis Testing/17.2 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
11.0 kB
38. Advanced Statistical Methods - K-Means Clustering/15.4 Species Segmentation with Cluster Analysis Part 2 - Exercise.ipynb
11.0 kB
51. Deep Learning - Business Case Example/1. Business Case Exploring the Dataset and Identifying Predictors.srt
10.9 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8.1 TensorFlow_Audiobooks_optimizing_the_algorithm.ipynb
10.9 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9.2 TensorFlow_Audiobooks_optimizing_the_algorithm.ipynb
10.9 kB
2/5. Business Analytics, Data Analytics, and Data Science An Introduction.srt
10.9 kB
5. The Field of Data Science - Popular Data Science Techniques/1. Techniques for Working with Traditional Data.srt
10.9 kB
18/9.1 3.11. Population variance unknown, t-score_exercise.xlsx
10.9 kB
35/8. Practical Example Linear Regression (Part 5).srt
10.8 kB
20. Statistics - Hypothesis Testing/20.1 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
10.8 kB
5. The Field of Data Science - Popular Data Science Techniques/15. Types of Machine Learning.srt
10.8 kB
15. Statistics - Descriptive Statistics/17.1 2.7. Mean, median and mode_lesson.xlsx
10.7 kB
50. Deep Learning - Classifying on the MNIST Dataset/8.1 TensorFlow_MNIST_Part4_with_comments.ipynb
10.7 kB
18/12.1 3.13. Confidence intervals. Two means. Dependent samples_lesson.xlsx
10.7 kB
34/10.1 sklearn - Feature Selection with F-regression.ipynb
10.7 kB
34/8.1 sklearn - Multiple Linear Regression and Adjusted R-squared_with_comments.ipynb
10.7 kB
56. Software Integration/5. Taking a Closer Look at APIs.srt
10.6 kB
17. Statistics - Inferential Statistics Fundamentals/6.1 3.4. Standard normal distribution_lesson.xlsx
10.6 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7.1 TensorFlow_Audiobooks_Outlining_the_model_with_comments.ipynb
10.6 kB
38. Advanced Statistical Methods - K-Means Clustering/5.1 Categorical.csv
10.6 kB
34/9.2 sklearn - Multiple Linear Regression and Adjusted R-squared - Exercise Solution.ipynb
10.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.srt
10.4 kB
54/8. MNIST Learning.srt
10.4 kB
18/15.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise_solution.xlsx
10.4 kB
15. Statistics - Descriptive Statistics/22.1 2.9. Variance_lesson.xlsx
10.3 kB
51. Deep Learning - Business Case Example/9.1 TensorFlow_Audiobooks_Machine_Learning_Part3_with_comments.ipynb
10.3 kB
51. Deep Learning - Business Case Example/5.1 TensorFlow_Audiobooks_Preprocessing_Exercise_Solution.ipynb
10.3 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/5.2 TensorFlow_Audiobooks_Preprocessing_Exercise_Solution.ipynb
10.3 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.srt
10.3 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2. Analyzing Age vs Probability in Tableau.srt
10.3 kB
62. Appendix - Additional Python Tools/6. Anonymous (Lambda) Functions.srt
10.1 kB
34/9.3 sklearn - Multiple Linear Regression and Adjusted R-squared - Exercise.ipynb
10.1 kB
13. Probability - Probability in Other Fields/1. Probability in Finance.srt
10.1 kB
18/14.1 3.14. Confidence intervals. Two means. Independent samples (Part 1)_lesson.xlsx
10.1 kB
28. Python - Sequences/1. Lists.srt
10.1 kB
18/15.2 3.14. Confidence intervals. Two means. Independent samples (Part 1)_exercise.xlsx
10.1 kB
18/3. Confidence Intervals; Population Variance Known; Z-score.srt
10.0 kB
18/17.2 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise_solution.xlsx
10.0 kB
20. Statistics - Hypothesis Testing/14.1 4.7. Test for the mean. Dependent samples_lesson.xlsx
10.0 kB
12. Probability - Distributions/29.1 Customers_Membership.xlsx
9.9 kB
20. Statistics - Hypothesis Testing/16.1 4.8. Test for the mean. Independent samples (Part 1)_lesson.xlsx
9.9 kB
34/19. Train - Test Split Explained.srt
9.8 kB
38. Advanced Statistical Methods - K-Means Clustering/2. A Simple Example of Clustering.srt
9.8 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/4. Analyzing Reasons vs Probability in Tableau.srt
9.8 kB
12. Probability - Distributions/29.2 Daily Views.xlsx
9.8 kB
18/16.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_lesson.xlsx
9.7 kB
40. Part 6 Mathematics/15. Dot Product of Matrices.srt
9.7 kB
15. Statistics - Descriptive Statistics/21.2 2.8. Skewness_exercise.xlsx
9.7 kB
33/20.2 Making predictions_with_comments.ipynb
9.6 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7.2 TensorFlow_Audiobooks_Outlining_the_model.ipynb
9.6 kB
12. Probability - Distributions/3. Types of Probability Distributions.srt
9.5 kB
20. Statistics - Hypothesis Testing/18.1 4.9. Test for the mean. Independent samples (Part 2)_lesson.xlsx
9.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/6. MNIST Preprocess the Data - Shuffle and Batch.srt
9.5 kB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).srt
9.4 kB
18/17.1 3.15. Confidence intervals. Two means. Independent samples (Part 2)_exercise.xlsx
9.4 kB
34/8.2 sklearn - Multiple Linear Regression and Adjusted R-squared.ipynb
9.3 kB
54/4. MNIST Model Outline.srt
9.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/6.1 TensorFlow_Minimal_example_Part2.ipynb
9.3 kB
34/19.1 sklearn - Train Test Split_with_comments.ipynb
9.3 kB
3/1. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.srt
9.2 kB
9. Part 2 Probability/1. The Basic Probability Formula.srt
9.1 kB
22. Part 4 Introduction to Python/7. Installing Python and Jupyter.srt
9.1 kB
5. The Field of Data Science - Popular Data Science Techniques/13. Machine Learning (ML) Techniques.srt
8.9 kB
20. Statistics - Hypothesis Testing/4. Rejection Region and Significance Level.srt
8.9 kB
12. Probability - Distributions/15. Characteristics of Continuous Distributions.srt
8.9 kB
34/7.2 sklearn - Multiple Linear Regression_with_comments.ipynb
8.9 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8.1 5.5. TensorFlow_Minimal_example_Part_3.ipynb
8.9 kB
5. The Field of Data Science - Popular Data Science Techniques/7. Business Intelligence (BI) Techniques.srt
8.8 kB
50. Deep Learning - Classifying on the MNIST Dataset/7.1 TensorFlow_MNIST_Part3_with_comments.ipynb
8.8 kB
51. Deep Learning - Business Case Example/5.2 TensorFlow_Audiobooks_Preprocessing_Exercise.ipynb
8.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/5.1 TensorFlow_Audiobooks_Preprocessing_Exercise.ipynb
8.8 kB
56. Software Integration/3. What are Data Connectivity, APIs, and Endpoints.srt
8.7 kB
54/7.1 12.7. TensorFlow_MNIST_with_comments_Part_5.ipynb
8.7 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/32.1 Absenteeism Exercise - Preprocessing - df_preprocessed.ipynb
8.7 kB
38. Advanced Statistical Methods - K-Means Clustering/7.2 How to Choose the Number of Clusters - Solution.ipynb
8.7 kB
21. Statistics - Practical Example Hypothesis Testing/1. Practical Example Hypothesis Testing.srt
8.7 kB
42. Deep Learning - Introduction to Neural Networks/21. Optimization Algorithm 1-Parameter Gradient Descent.srt
8.7 kB
13. Probability - Probability in Other Fields/2. Probability in Statistics.srt
8.6 kB
28. Python - Sequences/7. Dictionaries.srt
8.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.srt
8.6 kB
59/2. Creating the Targets for the Logistic Regression.srt
8.6 kB
28. Python - Sequences/3. Using Methods.srt
8.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/29.1 Absenteeism Exercise - Removing the Date Column - SOLUTION.ipynb
8.5 kB
12. Probability - Distributions/11. Discrete Distributions The Binomial Distribution.srt
8.5 kB
62. Appendix - Additional Python Tools/3. Introduction to Nested For Loops.srt
8.5 kB
36. Advanced Statistical Methods - Logistic Regression/16.3 Bank_data_testing.csv
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/3.3 Countries-exercise.csv
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/7.3 Countries_exercise.csv
8.5 kB
54/9. MNIST Results and Testing.srt
8.4 kB
33/18. Dealing with Categorical Data - Dummy Variables.srt
8.3 kB
20. Statistics - Hypothesis Testing/8. Test for the Mean. Population Variance Known.srt
8.3 kB
59/5. Splitting the Data for Training and Testing.srt
8.3 kB
18/12. Confidence intervals. Two means. Dependent samples.srt
8.2 kB
35/2. Practical Example Linear Regression (Part 2).srt
8.2 kB
62. Appendix - Additional Python Tools/4. Triple Nested For Loops.srt
8.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.srt
8.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.srt
8.1 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/9. Basic NN Example with TF Model Output.srt
8.1 kB
29. Python - Iterations/8. How to Iterate over Dictionaries.srt
8.1 kB
32/8. First Regression in Python.srt
8.1 kB
54/6.1 12.6. TensorFlow_MNIST_with_comments_Part_4.ipynb
8.1 kB
59/8. Interpreting the Coefficients for Our Problem.srt
8.1 kB
44. Deep Learning - TensorFlow 2.0 Introduction/6. Outlining the Model with TensorFlow 2.srt
8.0 kB
51. Deep Learning - Business Case Example/9. Business Case Setting an Early Stopping Mechanism.srt
8.0 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/7. Dropping a Column from a DataFrame in Python.srt
8.0 kB
22. Part 4 Introduction to Python/9. Prerequisites for Coding in the Jupyter Notebooks.srt
8.0 kB
34/7.3 sklearn - Multiple Linear Regression.ipynb
8.0 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/6. Creating a Data Provider.srt
7.9 kB
34/14. Feature Scaling (Standardization).srt
7.9 kB
29. Python - Iterations/4. Lists with the range() Function.srt
7.8 kB
36. Advanced Statistical Methods - Logistic Regression/15.3 Testing the model_with_comments.ipynb
7.7 kB
23. Python - Variables and Data Types/5.3 Strings - Lecture_Py3.ipynb
7.7 kB
12. Probability - Distributions/1. Fundamentals of Probability Distributions.srt
7.7 kB
15. Statistics - Descriptive Statistics/22. Variance.srt
7.7 kB
60. Case Study - Loading the 'absenteeism_module'/3. Deploying the 'absenteeism_module' - Part II.srt
7.7 kB
33/3. Adjusted R-Squared.srt
7.7 kB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).srt
7.7 kB
42. Deep Learning - Introduction to Neural Networks/23. Optimization Algorithm n-Parameter Gradient Descent.srt
7.7 kB
38. Advanced Statistical Methods - K-Means Clustering/6.2 Selecting the number of clusters_with_comments.ipynb
7.7 kB
29. Python - Iterations/6. Conditional Statements and Loops.srt
7.6 kB
59/6. Fitting the Model and Assessing its Accuracy.srt
7.6 kB
38. Advanced Statistical Methods - K-Means Clustering/6. How to Choose the Number of Clusters.srt
7.5 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.srt
7.5 kB
39. Advanced Statistical Methods - Other Types of Clustering/2. Dendrogram.srt
7.5 kB
38. Advanced Statistical Methods - K-Means Clustering/14.2 Species Segmentation with Cluster Analysis Part 1- Solution.ipynb
7.5 kB
34/3. Simple Linear Regression with sklearn.srt
7.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/29.2 Absenteeism Exercise - Preprocessing - ChP - df_date_reason_mod.ipynb
7.5 kB
54/5.1 12.5. TensorFlow_MNIST_with_comments_Part_3.ipynb
7.5 kB
6. The Field of Data Science - Popular Data Science Tools/1. Necessary Programming Languages and Software Used in Data Science.srt
7.5 kB
34/15. Feature Selection through Standardization of Weights.srt
7.4 kB
59/10. Interpreting the Coefficients of the Logistic Regression.srt
7.4 kB
34/19.2 sklearn - Train Test Split.ipynb
7.4 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/6. Analyzing Transportation Expense vs Probability in Tableau.srt
7.4 kB
50. Deep Learning - Classifying on the MNIST Dataset/8. MNIST Outline the Model.srt
7.4 kB
11. Probability - Bayesian Inference/20. Bayes' Law.srt
7.4 kB
23. Python - Variables and Data Types/5. Python Strings.srt
7.3 kB
33/18.3 Dummy variables_with_comments.ipynb
7.3 kB
32/1. The Linear Regression Model.srt
7.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/3. Checking the Content of the Data Set.srt
7.2 kB
20. Statistics - Hypothesis Testing/1. Null vs Alternative Hypothesis.srt
7.1 kB
22. Part 4 Introduction to Python/3. Why Python.srt
7.1 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/7. Business Case Model Outline.srt
7.1 kB
28. Python - Sequences/6. Tuples.srt
7.1 kB
22. Part 4 Introduction to Python/1. Introduction to Programming.srt
7.1 kB
46. Deep Learning - Overfitting/6. Early Stopping or When to Stop Training.srt
7.0 kB
38. Advanced Statistical Methods - K-Means Clustering/12.2 Market segmentation example_Part2_with_comments.ipynb
7.0 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3.1 Minimal_example_Part_3.ipynb
7.0 kB
36. Advanced Statistical Methods - Logistic Regression/16.2 Testing the Model - Exercise..ipynb
7.0 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2. Basic NN Example (Part 2).srt
7.0 kB
50. Deep Learning - Classifying on the MNIST Dataset/12.1 TensorFlow_MNIST_complete.ipynb
6.9 kB
9. Part 2 Probability/7. Events and Their Complements.srt
6.9 kB
56. Software Integration/9. Software Integration - Explained.srt
6.9 kB
45/3. Digging into a Deep Net.srt
6.9 kB
34/4. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.srt
6.9 kB
15. Statistics - Descriptive Statistics/14. Cross Tables and Scatter Plots.srt
6.8 kB
9. Part 2 Probability/3. Computing Expected Values.srt
6.8 kB
33/13. A3 Normality and Homoscedasticity.srt
6.8 kB
34/10. Feature Selection (F-regression).srt
6.8 kB
38. Advanced Statistical Methods - K-Means Clustering/1. K-Means Clustering.srt
6.8 kB
13. Probability - Probability in Other Fields/3. Probability in Data Science.srt
6.8 kB
2/1. Data Science and Business Buzzwords Why are there so Many.srt
6.8 kB
59/7. Creating a Summary Table with the Coefficients and Intercept.srt
6.8 kB
60. Case Study - Loading the 'absenteeism_module'/1.5 absenteeism_module.py
6.8 kB
26. Python - Conditional Statements/4. The ELIF Statement.srt
6.8 kB
15. Statistics - Descriptive Statistics/24. Standard Deviation and Coefficient of Variation.srt
6.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/8. Business Case Optimization.srt
6.8 kB
29. Python - Iterations/1. For Loops.srt
6.7 kB
32/17. R-Squared.srt
6.7 kB
12. Probability - Distributions/13. Discrete Distributions The Poisson Distribution.srt
6.7 kB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.srt
6.7 kB
4. The Field of Data Science - The Benefits of Each Discipline/1. The Reason Behind These Disciplines.srt
6.7 kB
59/12. Testing the Model We Created.srt
6.7 kB
52. Deep Learning - Conclusion/4. An overview of CNNs.srt
6.6 kB
9. Part 2 Probability/5. Frequency.srt
6.6 kB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.srt
6.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/5.1 TensorFlow_MNIST_Part2_with_comments.ipynb
6.5 kB
44. Deep Learning - TensorFlow 2.0 Introduction/1. How to Install TensorFlow 2.0.srt
6.5 kB
1. Part 1 Introduction/1. A Practical Example What You Will Learn in This Course.srt
6.5 kB
39. Advanced Statistical Methods - Other Types of Clustering/3. Heatmaps.srt
6.5 kB
32/11. How to Interpret the Regression Table.srt
6.5 kB
15. Statistics - Descriptive Statistics/5. Categorical Variables - Visualization Techniques.srt
6.5 kB
50. Deep Learning - Classifying on the MNIST Dataset/4. MNIST Preprocess the Data - Create a Validation Set and Scale It.srt
6.4 kB
34/8. Calculating the Adjusted R-Squared in sklearn.srt
6.4 kB
51. Deep Learning - Business Case Example/8. Business Case Learning and Interpreting the Result.srt
6.4 kB
20. Statistics - Hypothesis Testing/14. Test for the Mean. Dependent Samples.srt
6.4 kB
37. Advanced Statistical Methods - Cluster Analysis/2. Some Examples of Clusters.srt
6.4 kB
44. Deep Learning - TensorFlow 2.0 Introduction/7. Interpreting the Result and Extracting the Weights and Bias.srt
6.4 kB
36. Advanced Statistical Methods - Logistic Regression/5.3 Example_bank_data.csv
6.4 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/7.1 5.4. TensorFlow_Minimal_example_Part_2.ipynb
6.3 kB
28. Python - Sequences/7.3 Dictionaries - Solution_Py3.ipynb
6.3 kB
18/10. Margin of Error.srt
6.3 kB
40. Part 6 Mathematics/7. Arrays in Python - A Convenient Way To Represent Matrices.srt
6.3 kB
54/4.1 12.4. TensorFlow_MNIST_with_comments_Part_2.ipynb
6.2 kB
30. Python - Advanced Python Tools/1. Object Oriented Programming.srt
6.2 kB
18/14. Confidence intervals. Two means. Independent Samples (Part 1).srt
6.2 kB
34/17.2 sklearn - Feature Scaling Exercise.ipynb
6.2 kB
34/3.2 sklearn - Simple Linear Regression_with_comments.ipynb
6.2 kB
62. Appendix - Additional Python Tools/2. Iterating Over Range Objects.srt
6.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.srt
6.2 kB
49. Deep Learning - Preprocessing/3. Standardization.srt
6.1 kB
15. Statistics - Descriptive Statistics/1. Types of Data.srt
6.1 kB
48/4. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.srt
6.1 kB
56. Software Integration/1. What are Data, Servers, Clients, Requests, and Responses.srt
6.1 kB
29. Python - Iterations/3. While Loops and Incrementing.srt
6.0 kB
38. Advanced Statistical Methods - K-Means Clustering/11.3 Market segmentation example_with_comments.ipynb
6.0 kB
42. Deep Learning - Introduction to Neural Networks/1. Introduction to Neural Networks.srt
6.0 kB
38. Advanced Statistical Methods - K-Means Clustering/9. To Standardize or not to Standardize.srt
6.0 kB
25. Python - Other Python Operators/3.1 Logical and Identity Operators - Lecture_Py3.ipynb
6.0 kB
25. Python - Other Python Operators/3.2 Logical and Identity Operators - Lecture_Py3.ipynb
6.0 kB
17. Statistics - Inferential Statistics Fundamentals/2. What is a Distribution.srt
6.0 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.srt
6.0 kB
38. Advanced Statistical Methods - K-Means Clustering/2.2 Country clusters_with_comments.ipynb
5.9 kB
36. Advanced Statistical Methods - Logistic Regression/2. A Simple Example in Python.srt
5.9 kB
33/20.1 Making predictions.ipynb
5.9 kB
36. Advanced Statistical Methods - Logistic Regression/15.2 Testing the model.ipynb
5.9 kB
25. Python - Other Python Operators/3. Logical and Identity Operators.srt
5.9 kB
20. Statistics - Hypothesis Testing/12. Test for the Mean. Population Variance Unknown.srt
5.9 kB
15. Statistics - Descriptive Statistics/17. Mean, median and mode.srt
5.9 kB
18/8. Confidence Intervals; Population Variance Unknown; T-score.srt
5.8 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.srt
5.8 kB
5. The Field of Data Science - Popular Data Science Techniques/4. Techniques for Working with Big Data.srt
5.8 kB
34/13.2 sklearn - Multiple Linear Regression Exercise.ipynb
5.8 kB
20. Statistics - Hypothesis Testing/6. Type I Error and Type II Error.srt
5.8 kB
17. Statistics - Inferential Statistics Fundamentals/9. Central Limit Theorem.srt
5.8 kB
32/7. Python Packages Installation.srt
5.8 kB
38. Advanced Statistical Methods - K-Means Clustering/4.1 Categorical data_with_comments.ipynb
5.8 kB
59/16. Preparing the Deployment of the Model through a Module.srt
5.8 kB
10. Probability - Combinatorics/11. Solving Combinations.srt
5.7 kB
34/16. Predicting with the Standardized Coefficients.srt
5.7 kB
46. Deep Learning - Overfitting/1. What is Overfitting.srt
5.7 kB
51. Deep Learning - Business Case Example/4.2 TensorFlow_Audiobooks_Preprocessing.ipynb
5.7 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/4.1 TensorFlow_Audiobooks_Preprocessing.ipynb
5.7 kB
59/13. Saving the Model and Preparing it for Deployment.srt
5.7 kB
36. Advanced Statistical Methods - Logistic Regression/7. Understanding Logistic Regression Tables.srt
5.7 kB
28. Python - Sequences/5. List Slicing.srt
5.7 kB
38. Advanced Statistical Methods - K-Means Clustering/7.1 How to Choose the Number of Clusters - Exercise.ipynb
5.7 kB
11. Probability - Bayesian Inference/7. Union of Sets.srt
5.7 kB
27. Python - Python Functions/7.3 Notable Built-In Functions in Python - Solution_Py3.ipynb
5.7 kB
20. Statistics - Hypothesis Testing/16. Test for the mean. Independent Samples (Part 1).srt
5.6 kB
56. Software Integration/7. Communication between Software Products through Text Files.srt
5.6 kB
14. Part 3 Statistics/1. Population and Sample.srt
5.6 kB
42. Deep Learning - Introduction to Neural Networks/11. The Linear model with Multiple Inputs and Multiple Outputs.srt
5.6 kB
57. Case Study - What's Next in the Course/1. Game Plan for this Python, SQL, and Tableau Business Exercise.srt
5.6 kB
23. Python - Variables and Data Types/5.1 Strings - Solution_Py3.ipynb
5.6 kB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.srt
5.5 kB
18/5. Confidence Interval Clarifications.srt
5.5 kB
36. Advanced Statistical Methods - Logistic Regression/13.3 Calculating the Accuracy of the Model - Exercise.ipynb
5.5 kB
40. Part 6 Mathematics/13. Transpose of a Matrix.srt
5.5 kB
36. Advanced Statistical Methods - Logistic Regression/2.3 Admittance_with_comments.ipynb
5.4 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.srt
5.4 kB
8. The Field of Data Science - Debunking Common Misconceptions/1. Debunking Common Misconceptions.srt
5.4 kB
12. Probability - Distributions/19. Continuous Distributions The Standard Normal Distribution.srt
5.4 kB
42. Deep Learning - Introduction to Neural Networks/19. Common Objective Functions Cross-Entropy Loss.srt
5.4 kB
45/5. Activation Functions.srt
5.4 kB
33/11. A2 No Endogeneity.srt
5.4 kB
59/11. Backward Elimination or How to Simplify Your Model.srt
5.4 kB
44. Deep Learning - TensorFlow 2.0 Introduction/2. TensorFlow Outline and Comparison with Other Libraries.srt
5.4 kB
42. Deep Learning - Introduction to Neural Networks/5. Types of Machine Learning.srt
5.4 kB
52. Deep Learning - Conclusion/1. Summary on What You've Learned.srt
5.3 kB
48/6. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).srt
5.3 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/4. TensorFlow Intro.srt
5.3 kB
54/6. Calculating the Accuracy of the Model.srt
5.3 kB
20. Statistics - Hypothesis Testing/18. Test for the mean. Independent Samples (Part 2).srt
5.3 kB
52. Deep Learning - Conclusion/6. An Overview of non-NN Approaches.srt
5.2 kB
2/9. A Breakdown of our Data Science Infographic.srt
5.2 kB
1. Part 1 Introduction/2. What Does the Course Cover.srt
5.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.srt
5.2 kB
2/3. What is the difference between Analysis and Analytics.srt
5.2 kB
11. Probability - Bayesian Inference/1. Sets and Events.srt
5.2 kB
20. Statistics - Hypothesis Testing/10. p-value.srt
5.2 kB
59/9. Standardizing only the Numerical Variables (Creating a Custom Scaler).srt
5.1 kB
28. Python - Sequences/5.3 List Slicing - Lecture_Py3.ipynb
5.1 kB
12. Probability - Distributions/27. Continuous Distributions The Logistic Distribution.srt
5.1 kB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.srt
5.1 kB
11. Probability - Bayesian Inference/13. The Conditional Probability Formula.srt
5.1 kB
15. Statistics - Descriptive Statistics/27. Covariance.srt
5.0 kB
34/3.1 sklearn - Simple Linear Regression.ipynb
5.0 kB
33/14. A4 No Autocorrelation.srt
5.0 kB
17. Statistics - Inferential Statistics Fundamentals/4. The Normal Distribution.srt
5.0 kB
38. Advanced Statistical Methods - K-Means Clustering/5.3 Clustering Categorical Data - Solution.ipynb
5.0 kB
46. Deep Learning - Overfitting/3. What is Validation.srt
5.0 kB
36. Advanced Statistical Methods - Logistic Regression/3. Logistic vs Logit Function.srt
5.0 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/8. Basic NN Example with TF Loss Function and Gradient Descent.srt
4.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/23.1 Absenteeism Exercise - Preprocessing - df_reason_mod.ipynb
4.9 kB
30. Python - Advanced Python Tools/7. Importing Modules in Python.srt
4.9 kB
48/1. Stochastic Gradient Descent.srt
4.9 kB
49. Deep Learning - Preprocessing/5. Binary and One-Hot Encoding.srt
4.9 kB
37. Advanced Statistical Methods - Cluster Analysis/1. Introduction to Cluster Analysis.srt
4.9 kB
36. Advanced Statistical Methods - Logistic Regression/8.2 Understanding Logistic Regression Tables - Solution.ipynb
4.9 kB
36. Advanced Statistical Methods - Logistic Regression/9. What do the Odds Actually Mean.srt
4.9 kB
12. Probability - Distributions/17. Continuous Distributions The Normal Distribution.srt
4.9 kB
60. Case Study - Loading the 'absenteeism_module'/2. Deploying the 'absenteeism_module' - Part I.srt
4.9 kB
15. Statistics - Descriptive Statistics/30. Correlation Coefficient.srt
4.8 kB
51. Deep Learning - Business Case Example/6. Business Case Load the Preprocessed Data.srt
4.8 kB
38. Advanced Statistical Methods - K-Means Clustering/12.1 Market segmentation example_Part2.ipynb
4.8 kB
39. Advanced Statistical Methods - Other Types of Clustering/1. Types of Clustering.srt
4.8 kB
38. Advanced Statistical Methods - K-Means Clustering/3.1 A Simple Example of Clustering - Solution.ipynb
4.8 kB
22. Part 4 Introduction to Python/5. Why Jupyter.srt
4.7 kB
41. Part 7 Deep Learning/1. What to Expect from this Part.srt
4.7 kB
11. Probability - Bayesian Inference/18. The Multiplication Law.srt
4.7 kB
33/16. A5 No Multicollinearity.srt
4.7 kB
33/18.2 Dummy Variables.ipynb
4.7 kB
51. Deep Learning - Business Case Example/7.1 TensorFlow_Audiobooks_Machine_Learning_Part1_with_comments.ipynb
4.7 kB
38. Advanced Statistical Methods - K-Means Clustering/8. Pros and Cons of K-Means Clustering.srt
4.7 kB
28. Python - Sequences/6.2 Tuples - Solution_Py3.ipynb
4.7 kB
59/1. Exploring the Problem with a Machine Learning Mindset.srt
4.7 kB
40. Part 6 Mathematics/7.1 Scalars, Vectors, and Matrices.ipynb
4.7 kB
15. Statistics - Descriptive Statistics/3. Levels of Measurement.srt
4.7 kB
38. Advanced Statistical Methods - K-Means Clustering/6.1 Selecting the number of clusters.ipynb
4.6 kB
23. Python - Variables and Data Types/1. Variables.srt
4.6 kB
10. Probability - Combinatorics/9. Solving Variations without Repetition.srt
4.6 kB
27. Python - Python Functions/7.2 Notable Built-In Functions in Python - Lecture_Py3.ipynb
4.6 kB
36. Advanced Statistical Methods - Logistic Regression/11.1 Binary Predictors in a Logistic Regression - Solution.ipynb
4.6 kB
18/16. Confidence intervals. Two means. Independent Samples (Part 2).srt
4.6 kB
51. Deep Learning - Business Case Example/3. Business Case Balancing the Dataset.srt
4.6 kB
7. The Field of Data Science - Careers in Data Science/1. Finding the Job - What to Expect and What to Look for.srt
4.6 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/3. The Importance of Working with a Balanced Dataset.srt
4.6 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.srt
4.6 kB
45/7. Backpropagation.srt
4.6 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1. Basic NN Example (Part 1).srt
4.6 kB
38. Advanced Statistical Methods - K-Means Clustering/14.3 Species Segmentation with Cluster Analysis Part 1- Exercise.ipynb
4.6 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/3. Basic NN Example (Part 3).srt
4.6 kB
45/6. Activation Functions Softmax Activation.srt
4.6 kB
33/20. Making Predictions with the Linear Regression.srt
4.6 kB
36. Advanced Statistical Methods - Logistic Regression/5.1 Building a Logistic Regression - Solution.ipynb
4.5 kB
11. Probability - Bayesian Inference/3. Ways Sets Can Interact.srt
4.5 kB
28. Python - Sequences/3.3 Help Yourself with Methods - Lecture_Py3.ipynb
4.5 kB
15. Statistics - Descriptive Statistics/8. Numerical Variables - Frequency Distribution Table.srt
4.5 kB
28. Python - Sequences/7.2 Dictionaries - Lecture_Py3.ipynb
4.5 kB
40. Part 6 Mathematics/1. What is a Matrix.srt
4.4 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.srt
4.4 kB
10. Probability - Combinatorics/13. Symmetry of Combinations.srt
4.4 kB
27. Python - Python Functions/2. How to Create a Function with a Parameter.srt
4.4 kB
42. Deep Learning - Introduction to Neural Networks/3. Training the Model.srt
4.4 kB
40. Part 6 Mathematics/14. Dot Product.srt
4.4 kB
28. Python - Sequences/5.1 List Slicing - Solution_Py3.ipynb
4.4 kB
24. Python - Basic Python Syntax/1.2 Arithmetic Operators - Solution_Py3.ipynb
4.3 kB
27. Python - Python Functions/7. Built-in Functions in Python.srt
4.3 kB
59/4. Standardizing the Data.srt
4.3 kB
46. Deep Learning - Overfitting/5. N-Fold Cross Validation.srt
4.3 kB
34/7. Multiple Linear Regression with sklearn.srt
4.3 kB
32/13. Decomposition of Variability.srt
4.3 kB
10. Probability - Combinatorics/17. Combinatorics in Real-Life The Lottery.srt
4.2 kB
57. Case Study - What's Next in the Course/3. Introducing the Data Set.srt
4.2 kB
12. Probability - Distributions/25. Continuous Distributions The Exponential Distribution.srt
4.2 kB
18/6. Student's T Distribution.srt
4.2 kB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.srt
4.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/32.2 Absenteeism Exercise - EXERCISES and SOLUTIONS.ipynb
4.2 kB
35/4. Practical Example Linear Regression (Part 3).srt
4.2 kB
24. Python - Basic Python Syntax/1. Using Arithmetic Operators in Python.srt
4.2 kB
44. Deep Learning - TensorFlow 2.0 Introduction/8. Customizing a TensorFlow 2 Model.srt
4.2 kB
36. Advanced Statistical Methods - Logistic Regression/4.3 Admittance regression tables_fixed_error.ipynb
4.2 kB
40. Part 6 Mathematics/5. Linear Algebra and Geometry.srt
4.2 kB
10. Probability - Combinatorics/3. Permutations and How to Use Them.srt
4.2 kB
32/8.2 Simple linear regression_with_comments.ipynb
4.2 kB
37. Advanced Statistical Methods - Cluster Analysis/4. Math Prerequisites.srt
4.2 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/4. Introduction to Terms with Multiple Meanings.srt
4.2 kB
40. Part 6 Mathematics/10. Addition and Subtraction of Matrices.srt
4.1 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/2. Importing the Absenteeism Data in Python.srt
4.1 kB
45/8. Backpropagation Picture.srt
4.1 kB
50. Deep Learning - Classifying on the MNIST Dataset/3.1 TensorFlow_MNIST_Part1_with_comments.ipynb
4.1 kB
17. Statistics - Inferential Statistics Fundamentals/6. The Standard Normal Distribution.srt
4.0 kB
54/3.1 12.3. TensorFlow_MNIST_with_comments_Part_1.ipynb
4.0 kB
45/4. Non-Linearities and their Purpose.srt
4.0 kB
42. Deep Learning - Introduction to Neural Networks/7. The Linear Model (Linear Algebraic Version).srt
4.0 kB
49. Deep Learning - Preprocessing/1. Preprocessing Introduction.srt
4.0 kB
12. Probability - Distributions/9. Discrete Distributions The Bernoulli Distribution.srt
3.9 kB
32/15. What is the OLS.srt
3.9 kB
38. Advanced Statistical Methods - K-Means Clustering/11.2 Market segmentation example.ipynb
3.9 kB
32/8.1 Simple linear regression.ipynb
3.9 kB
23. Python - Variables and Data Types/1.2 Variables - Solution_Py3.ipynb
3.9 kB
38. Advanced Statistical Methods - K-Means Clustering/5.2 Clustering Categorical Data - Exercise.ipynb
3.9 kB
40. Part 6 Mathematics/3. Scalars and Vectors.srt
3.9 kB
57. Case Study - What's Next in the Course/2. The Business Task.srt
3.8 kB
10. Probability - Combinatorics/15. Solving Combinations with Separate Sample Spaces.srt
3.8 kB
22. Part 4 Introduction to Python/8. Understanding Jupyter's Interface - the Notebook Dashboard.srt
3.8 kB
10. Probability - Combinatorics/19. A Recap of Combinatorics.srt
3.8 kB
17. Statistics - Inferential Statistics Fundamentals/13. Estimators and Estimates.srt
3.8 kB
47. Deep Learning - Initialization/3. State-of-the-Art Method - (Xavier) Glorot Initialization.srt
3.8 kB
52. Deep Learning - Conclusion/5. An Overview of RNNs.srt
3.8 kB
23. Python - Variables and Data Types/3. Numbers and Boolean Values in Python.srt
3.8 kB
47. Deep Learning - Initialization/2. Types of Simple Initializations.srt
3.8 kB
27. Python - Python Functions/7.1 Notable Built-In Functions in Python - Exercise_Py3.ipynb
3.7 kB
59/3. Selecting the Inputs for the Logistic Regression.srt
3.7 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/2.1 Minimal_example_Part_2.ipynb
3.7 kB
15. Statistics - Descriptive Statistics/19. Skewness.srt
3.7 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.srt
3.7 kB
44. Deep Learning - TensorFlow 2.0 Introduction/3. TensorFlow 1 vs TensorFlow 2.srt
3.7 kB
36. Advanced Statistical Methods - Logistic Regression/12.1 Accuracy.ipynb
3.7 kB
38. Advanced Statistical Methods - K-Means Clustering/15.3 iris_with_answers.csv
3.7 kB
38. Advanced Statistical Methods - K-Means Clustering/3.2 A Simple Example of Clustering - Exercise.ipynb
3.7 kB
54/2. MNIST How to Tackle the MNIST.srt
3.7 kB
23. Python - Variables and Data Types/1.3 Variables - Lecture_Py3.ipynb
3.7 kB
40. Part 6 Mathematics/8. What is a Tensor.srt
3.7 kB
40. Part 6 Mathematics/15.1 Dot product (Part 2).ipynb
3.7 kB
46. Deep Learning - Overfitting/4. Training, Validation, and Test Datasets.srt
3.7 kB
5. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Traditional Methods.srt
3.7 kB
50. Deep Learning - Classifying on the MNIST Dataset/1. MNIST The Dataset.srt
3.7 kB
32/9.2 Simple Linear Regression Exercise Solution.ipynb
3.7 kB
30. Python - Advanced Python Tools/5. What is the Standard Library.srt
3.6 kB
36. Advanced Statistical Methods - Logistic Regression/2.2 Admittance.ipynb
3.6 kB
54/5. MNIST Loss and Optimization Algorithm.srt
3.6 kB
26. Python - Conditional Statements/1. The IF Statement.srt
3.6 kB
24. Python - Basic Python Syntax/1.1 Arithmetic Operators - Lecture_Py3.ipynb
3.6 kB
50. Deep Learning - Classifying on the MNIST Dataset/2. MNIST How to Tackle the MNIST.srt
3.6 kB
27. Python - Python Functions/5. Conditional Statements and Functions.srt
3.6 kB
47. Deep Learning - Initialization/1. What is Initialization.srt
3.6 kB
44. Deep Learning - TensorFlow 2.0 Introduction/5. Types of File Formats Supporting TensorFlow.srt
3.6 kB
11. Probability - Bayesian Inference/15. The Law of Total Probability.srt
3.6 kB
54/1. MNIST What is the MNIST Dataset.srt
3.6 kB
10. Probability - Combinatorics/7. Solving Variations with Repetition.srt
3.6 kB
11. Probability - Bayesian Inference/11. Dependence and Independence of Sets.srt
3.5 kB
34/18. Underfitting and Overfitting.srt
3.5 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6. Types of File Formats, supporting Tensors.srt
3.5 kB
48/3. Momentum.srt
3.5 kB
25. Python - Other Python Operators/3.3 Logical and Identity Operators - Solution_Py3.ipynb
3.5 kB
34/1. What is sklearn and How is it Different from Other Packages.srt
3.5 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/2. How to Install TensorFlow 1.srt
3.5 kB
33/19.3 real_estate_price_size_year_view.csv
3.5 kB
23. Python - Variables and Data Types/3.2 Numbers and Boolean Values - Lecture_Py3.ipynb
3.4 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/6.1 5.3. TensorFlow_Minimal_example_Part_1.ipynb
3.4 kB
33/1. Multiple Linear Regression.srt
3.4 kB
38. Advanced Statistical Methods - K-Means Clustering/4.2 Categorical data.ipynb
3.4 kB
48/7. Adam (Adaptive Moment Estimation).srt
3.4 kB
38. Advanced Statistical Methods - K-Means Clustering/2.1 Country clusters.ipynb
3.4 kB
27. Python - Python Functions/3.3 Another Way to Define a Function - Lecture_Py3.ipynb
3.4 kB
36. Advanced Statistical Methods - Logistic Regression/4. Building a Logistic Regression.srt
3.4 kB
37. Advanced Statistical Methods - Cluster Analysis/3. Difference between Classification and Clustering.srt
3.4 kB
10. Probability - Combinatorics/5. Simple Operations with Factorials.srt
3.3 kB
18/1. What are Confidence Intervals.srt
3.3 kB
26. Python - Conditional Statements/4.2 Else If, for Brief - Elif - Lecture_Py3.ipynb
3.3 kB
45/2. What is a Deep Net.srt
3.3 kB
38. Advanced Statistical Methods - K-Means Clustering/4. Clustering Categorical Data.srt
3.3 kB
23. Python - Variables and Data Types/3.1 Numbers and Boolean Values - Solution_Py3.ipynb
3.3 kB
40. Part 6 Mathematics/10.1 Adding and subtracting matrices.ipynb
3.3 kB
36. Advanced Statistical Methods - Logistic Regression/6. An Invaluable Coding Tip.srt
3.3 kB
28. Python - Sequences/1.2 Lists - Solution_Py3.ipynb
3.3 kB
40. Part 6 Mathematics/12.1 Errors when adding scalars, vectors, and matrices in Python.ipynb
3.2 kB
36. Advanced Statistical Methods - Logistic Regression/8.1 Understanding Logistic Regression Tables - Exercise.ipynb
3.2 kB
26. Python - Conditional Statements/3. The ELSE Statement.srt
3.2 kB
42. Deep Learning - Introduction to Neural Networks/9. The Linear Model with Multiple Inputs.srt
3.2 kB
24. Python - Basic Python Syntax/5.3 Reassign Values - Lecture_Py3.ipynb
3.2 kB
50. Deep Learning - Classifying on the MNIST Dataset/3. MNIST Importing the Relevant Packages and Loading the Data.srt
3.1 kB
33/7. OLS Assumptions.srt
3.1 kB
50. Deep Learning - Classifying on the MNIST Dataset/9. MNIST Select the Loss and the Optimizer.srt
3.1 kB
33/19.2 Multiple Linear Regression with Dummies Exercise.ipynb
3.1 kB
34/12. Creating a Summary Table with P-values.srt
3.1 kB
15. Statistics - Descriptive Statistics/11. The Histogram.srt
3.1 kB
29. Python - Iterations/6.2 Use Conditional Statements and Loops Together - Solution_Py3.ipynb
3.0 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/9. Business Case Interpretation.srt
3.0 kB
28. Python - Sequences/7.1 Dictionaries - Exercise_Py3.ipynb
3.0 kB
34/2. How are we Going to Approach this Section.srt
3.0 kB
54/7. MNIST Batching and Early Stopping.srt
3.0 kB
36. Advanced Statistical Methods - Logistic Regression/5.2 Building a Logistic Regression - Exercise.ipynb
3.0 kB
26. Python - Conditional Statements/5. A Note on Boolean Values.srt
3.0 kB
28. Python - Sequences/6.3 Tuples - Lecture_Py3.ipynb
3.0 kB
5. The Field of Data Science - Popular Data Science Techniques/17. Real Life Examples of Machine Learning (ML).srt
3.0 kB
40. Part 6 Mathematics/13.1 Tranpose of a matrix.ipynb
3.0 kB
27. Python - Python Functions/3. Defining a Function in Python - Part II.srt
2.9 kB
29. Python - Iterations/8.1 Iterating over Dictionaries - Solution_Py3.ipynb
2.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/5. What's Regression Analysis - a Quick Refresher.html
2.9 kB
48/2. Problems with Gradient Descent.srt
2.9 kB
28. Python - Sequences/3.2 Help Yourself with Methods - Solution_Py3.ipynb
2.9 kB
33/3.3 Multiple linear regression and Adjusted R-squared_with_comments.ipynb
2.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/6. Using a Statistical Approach towards the Solution to the Exercise.srt
2.9 kB
12. Probability - Distributions/21. Continuous Distributions The Students' T Distribution.srt
2.9 kB
28. Python - Sequences/5.2 List Slicing - Exercise_Py3.ipynb
2.9 kB
32/9.1 Simple Linear Regression Exercise.ipynb
2.8 kB
42. Deep Learning - Introduction to Neural Networks/17. Common Objective Functions L2-norm Loss.srt
2.8 kB
49. Deep Learning - Preprocessing/4. Preprocessing Categorical Data.srt
2.8 kB
12. Probability - Distributions/23. Continuous Distributions The Chi-Squared Distribution.srt
2.8 kB
11. Probability - Bayesian Inference/16. The Additive Rule.srt
2.8 kB
12. Probability - Distributions/7. Discrete Distributions The Uniform Distribution.srt
2.8 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.srt
2.8 kB
28. Python - Sequences/1.1 Lists - Lecture_Py3.ipynb
2.8 kB
42. Deep Learning - Introduction to Neural Networks/13. Graphical Representation of Simple Neural Networks.srt
2.8 kB
46. Deep Learning - Overfitting/2. Underfitting and Overfitting for Classification.srt
2.7 kB
24. Python - Basic Python Syntax/1.3 Arithmetic Operators - Exercise_Py3.ipynb
2.7 kB
23. Python - Variables and Data Types/5.2 Strings - Exercise_Py3.ipynb
2.7 kB
40. Part 6 Mathematics/12. Errors when Adding Matrices.srt
2.6 kB
36. Advanced Statistical Methods - Logistic Regression/10.1 2.02. Binary predictors.csv
2.6 kB
33/6. Test for Significance of the Model (F-Test).srt
2.6 kB
52. Deep Learning - Conclusion/2. What's Further out there in terms of Machine Learning.srt
2.6 kB
36. Advanced Statistical Methods - Logistic Regression/11.2 Binary Predictors in a Logistic Regression - Exercise.ipynb
2.6 kB
63. Bonus Lecture/1. Bonus Lecture Next Steps.html
2.6 kB
25. Python - Other Python Operators/1.2 Comparison Operators - Lecture_Py3.ipynb
2.6 kB
55. Appendix Deep Learning - TensorFlow 1 Business Case/2. Business Case Outlining the Solution.srt
2.6 kB
11. Probability - Bayesian Inference/9. Mutually Exclusive Sets.srt
2.6 kB
36. Advanced Statistical Methods - Logistic Regression/4.1 Admittance regression_summary_error.ipynb
2.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/1. What to Expect from the Following Sections.html
2.5 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.srt
2.5 kB
11. Probability - Bayesian Inference/5. Intersection of Sets.srt
2.5 kB
25. Python - Other Python Operators/1. Comparison Operators.srt
2.5 kB
12. Probability - Distributions/5. Characteristics of Discrete Distributions.srt
2.5 kB
33/5.3 Multiple Linear Regression Exercise.ipynb
2.5 kB
27. Python - Python Functions/1. Defining a Function in Python.srt
2.5 kB
36. Advanced Statistical Methods - Logistic Regression/10.2 Binary predictors.ipynb
2.5 kB
29. Python - Iterations/7. Conditional Statements, Functions, and Loops.srt
2.5 kB
25. Python - Other Python Operators/1.3 Comparison Operators - Solution_Py3.ipynb
2.5 kB
38. Advanced Statistical Methods - K-Means Clustering/14.1 iris_dataset.csv
2.5 kB
38. Advanced Statistical Methods - K-Means Clustering/15.1 iris_dataset.csv
2.5 kB
26. Python - Conditional Statements/4.1 Else If, for Brief - Elif - Solution_Py3.ipynb
2.5 kB
45/1. What is a Layer.srt
2.4 kB
33/9. A1 Linearity.srt
2.4 kB
33/5.1 real_estate_price_size_year.csv
2.4 kB
34/13.3 real_estate_price_size_year.csv
2.4 kB
34/17.1 real_estate_price_size_year.csv
2.4 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/14. Dropping a Dummy Variable from the Data Set.html
2.4 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/3. A Note on Installing Packages in Anaconda.html
2.4 kB
20. Statistics - Hypothesis Testing/2. Further Reading on Null and Alternative Hypothesis.html
2.3 kB
23. Python - Variables and Data Types/3.3 Numbers and Boolean Values - Exercise_Py3.ipynb
2.3 kB
29. Python - Iterations/4.3 Create Lists with the range() Function - Solution_Py3.ipynb
2.3 kB
5. The Field of Data Science - Popular Data Science Techniques/3. Real Life Examples of Traditional Data.srt
2.3 kB
23. Python - Variables and Data Types/1.4 Variables - Exercise_Py3.ipynb
2.3 kB
31. Part 5 Advanced Statistical Methods in Python/1. Introduction to Regression Analysis.srt
2.3 kB
26. Python - Conditional Statements/1.1 Introduction to the If Statement - Solution_Py3.ipynb
2.2 kB
54/11. MNIST Solutions.html
2.2 kB
29. Python - Iterations/8.2 Iterating over Dictionaries - Exercise_Py3.ipynb
2.2 kB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.srt
2.2 kB
24. Python - Basic Python Syntax/12. Structuring with Indentation.srt
2.2 kB
24. Python - Basic Python Syntax/10.3 Indexing Elements - Solution_Py3.ipynb
2.2 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/5. Actual Introduction to TensorFlow.srt
2.2 kB
48/5. Learning Rate Schedules Visualized.srt
2.2 kB
33/3.2 Multiple linear regression and Adjusted R-squared_.ipynb
2.2 kB
59/14. ARTICLE - A Note on 'pickling'.html
2.2 kB
28. Python - Sequences/1.3 Lists - Exercise_Py3.ipynb
2.2 kB
40. Part 6 Mathematics/14.1 Dot product.ipynb
2.2 kB
5. The Field of Data Science - Popular Data Science Techniques/9. Real Life Examples of Business Intelligence (BI).srt
2.2 kB
54/10. MNIST Exercises.html
2.2 kB
24. Python - Basic Python Syntax/5.2 Reassign Values - Solution_Py3.ipynb
2.2 kB
42. Deep Learning - Introduction to Neural Networks/15. What is the Objective Function.srt
2.2 kB
54/3. MNIST Relevant Packages.srt
2.2 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/1.1 Absenteeism_predictions.csv
2.2 kB
61. Case Study - Analyzing the Predicted Outputs in Tableau/2.1 Absenteeism_predictions.csv
2.2 kB
29. Python - Iterations/6.1 Use Conditional Statements and Loops Together - Exercise_Py3.ipynb
2.1 kB
32/3. Correlation vs Regression.srt
2.1 kB
36. Advanced Statistical Methods - Logistic Regression/4.2 Admittance regression.ipynb
2.1 kB
40. Part 6 Mathematics/8.1 Tensors.ipynb
2.1 kB
28. Python - Sequences/6.1 Tuples - Exercise_Py3.ipynb
2.1 kB
51. Deep Learning - Business Case Example/11. Business Case Testing the Model.srt
2.1 kB
27. Python - Python Functions/4. How to Use a Function within a Function.srt
2.1 kB
17. Statistics - Inferential Statistics Fundamentals/11. Standard error.srt
2.1 kB
51. Deep Learning - Business Case Example/2. Business Case Outlining the Solution.srt
2.0 kB
27. Python - Python Functions/3.1 Another Way to Define a Function - Solution_Py3.ipynb
2.0 kB
50. Deep Learning - Classifying on the MNIST Dataset/11. MNIST - Exercises.html
2.0 kB
18/18. Confidence intervals. Two means. Independent Samples (Part 3).srt
2.0 kB
29. Python - Iterations/6.3 Use Conditional Statements and Loops Together - Lecture_Py3.ipynb
2.0 kB
28. Python - Sequences/3.1 Help Yourself with Methods - Exercise_Py3.ipynb
2.0 kB
29. Python - Iterations/7.3 All In - Solution_Py3.ipynb
1.9 kB
5. The Field of Data Science - Popular Data Science Techniques/6. Real Life Examples of Big Data.srt
1.9 kB
60. Case Study - Loading the 'absenteeism_module'/1.1 Absenteeism_new_data.csv
1.9 kB
60. Case Study - Loading the 'absenteeism_module'/1.3 scaler.original
1.9 kB
32/9.3 real_estate_price_size.csv
1.9 kB
24. Python - Basic Python Syntax/3. The Double Equality Sign.srt
1.9 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.srt
1.9 kB
39. Advanced Statistical Methods - Other Types of Clustering/3.2 Heatmaps.ipynb
1.9 kB
29. Python - Iterations/1.2 For Loops - Solution_Py3.ipynb
1.8 kB
24. Python - Basic Python Syntax/7. Add Comments.srt
1.8 kB
27. Python - Python Functions/2.1 Creating a Function with a Parameter - Solution_Py3.ipynb
1.8 kB
26. Python - Conditional Statements/3.1 Add an Else Statement - Lecture_Py3.ipynb
1.8 kB
26. Python - Conditional Statements/4.3 Else If, for Brief - Elif - Exercise_Py3.ipynb
1.8 kB
29. Python - Iterations/3.3 While Loops and Incrementing - Solution_Py3.ipynb
1.8 kB
27. Python - Python Functions/6.1 Creating Functions Containing a Few Arguments - Lecture_Py3.ipynb
1.8 kB
24. Python - Basic Python Syntax/10. Indexing Elements.srt
1.7 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.srt
1.7 kB
24. Python - Basic Python Syntax/5.1 Reassign Values - Exercise_Py3.ipynb
1.7 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/5. Basic NN Example Exercises.html
1.7 kB
44. Deep Learning - TensorFlow 2.0 Introduction/5.1 TensorFlow_Minimal_example_Part1.ipynb
1.7 kB
27. Python - Python Functions/5.3 Combining Conditional Statements and Functions - Solution_Py3.ipynb
1.7 kB
32/5. Geometrical Representation of the Linear Regression Model.srt
1.7 kB
49. Deep Learning - Preprocessing/2. Types of Basic Preprocessing.srt
1.7 kB
17. Statistics - Inferential Statistics Fundamentals/1. Introduction.srt
1.7 kB
29. Python - Iterations/7.1 All In - Lecture_Py3.ipynb
1.7 kB
36. Advanced Statistical Methods - Logistic Regression/1. Introduction to Logistic Regression.srt
1.6 kB
25. Python - Other Python Operators/1.1 Comparison Operators - Exercise_Py3.ipynb
1.6 kB
27. Python - Python Functions/4.2 0.6.4 Using a Function in another Function - Solution_Py3.ipynb
1.6 kB
27. Python - Python Functions/2.2 Creating a Function with a Parameter - Lecture_Py3.ipynb
1.6 kB
53. Appendix Deep Learning - TensorFlow 1 Introduction/10. Basic NN Example with TF Exercises.html
1.6 kB
36. Advanced Statistical Methods - Logistic Regression/2.1 2.01. Admittance.csv
1.6 kB
26. Python - Conditional Statements/1.2 Introduction to the If Statement - Exercise_Py3.ipynb
1.6 kB
24. Python - Basic Python Syntax/9.3 Line Continuation - Solution_Py3.ipynb
1.5 kB
24. Python - Basic Python Syntax/12.3 Structure Your Code with Indentation - Solution_Py3.ipynb
1.5 kB
32/10. Using Seaborn for Graphs.srt
1.5 kB
29. Python - Iterations/4.2 Create Lists with the range() Function - Exercise_Py3.ipynb
1.5 kB
24. Python - Basic Python Syntax/3.2 The Double Equality Sign - Lecture_Py3.ipynb
1.5 kB
26. Python - Conditional Statements/3.2 Add an Else Statement - Solution_Py3.ipynb
1.4 kB
44. Deep Learning - TensorFlow 2.0 Introduction/4. A Note on TensorFlow 2 Syntax.srt
1.4 kB
24. Python - Basic Python Syntax/10.1 Indexing Elements - Exercise_Py3.ipynb
1.4 kB
29. Python - Iterations/4.1 Create Lists with the range() Function - Lecture_Py3.ipynb
1.4 kB
27. Python - Python Functions/6. Functions Containing a Few Arguments.srt
1.4 kB
32/9. First Regression in Python Exercise.html
1.4 kB
24. Python - Basic Python Syntax/10.2 Indexing Elements - Lecture_Py3.ipynb
1.3 kB
10. Probability - Combinatorics/1. Fundamentals of Combinatorics.srt
1.3 kB
29. Python - Iterations/7.2 All In - Exercise_Py3.ipynb
1.3 kB
24. Python - Basic Python Syntax/5. How to Reassign Values.srt
1.3 kB
44. Deep Learning - TensorFlow 2.0 Introduction/9. Basic NN with TensorFlow Exercises.html
1.3 kB
27. Python - Python Functions/5.1 Combining Conditional Statements and Functions - Lecture_Py3.ipynb
1.3 kB
29. Python - Iterations/1.3 For Loops - Exercise_Py3.ipynb
1.3 kB
29. Python - Iterations/1.1 For Loops - Lecture_Py3.ipynb
1.3 kB
30. Python - Advanced Python Tools/3. Modules and Packages.srt
1.3 kB
27. Python - Python Functions/3.2 Another Way to Define a Function - Exercise_Py3.ipynb
1.3 kB
58. Case Study - Preprocessing the 'Absenteeism_data'/29. EXERCISE - Removing the Date Column.html
1.2 kB
33/18.1 1.03. Dummies.csv
1.2 kB
43. Deep Learning - How to Build a Neural Network from Scratch with NumPy/1.2 Minimal_example_Part_1.ipynb
1.2 kB
27. Python - Python Functions/2.3 Creating a Function with a Parameter - Exercise_Py3.ipynb
1.2 kB
26. Python - Conditional Statements/1.3 Introduction to the If Statement - Lecture_Py3.ipynb
1.2 kB
24. Python - Basic Python Syntax/3.3 The Double Equality Sign - Solution_Py3.ipynb
1.2 kB
24. Python - Basic Python Syntax/9.2 Line Continuation - Exercise_Py3.ipynb
1.2 kB
24. Python - Basic Python Syntax/9. Understanding Line Continuation.srt
1.2 kB
29. Python - Iterations/3.2 While Loops and Incrementing - Exercise_Py3.ipynb
1.1 kB
33/3.1 1.02. Multiple linear regression.csv
1.1 kB
29. Python - Iterations/3.1 While Loops and Incrementing - Lecture_Py3.ipynb
1.1 kB
29. Python - Iterations/8.3 Iterating over Dictionaries - Lecture_Py3.ipynb
1.1 kB
34/10.2 1.02. Multiple linear regression.csv
1.1 kB
34/11.2 1.02. Multiple linear regression.csv
1.1 kB
34/12.2 1.02. Multiple linear regression.csv
1.1 kB
34/14.1 1.02. Multiple linear regression.csv
1.1 kB
34/15.1 1.02. Multiple linear regression.csv
1.1 kB
34/16.1 1.02. Multiple linear regression.csv
1.1 kB
34/7.1 1.02. Multiple linear regression.csv
1.1 kB
34/8.3 1.02. Multiple linear regression.csv
1.1 kB
34/9.1 1.02. Multiple linear regression.csv
1.1 kB
27. Python - Python Functions/5.2 Combining Conditional Statements and Functions - Exercise_Py3.ipynb
1.1 kB
52. Deep Learning - Conclusion/3. DeepMind and Deep Learning.html
1.1 kB
27. Python - Python Functions/4.3 0.6.4 Using a Function in another Function - Exercise_Py3.ipynb
1.1 kB
24. Python - Basic Python Syntax/7.1 Add Comments - Lecture_Py3.ipynb
1.1 kB
26. Python - Conditional Statements/3.3 Add an Else Statement - Exercise_Py3.ipynb
1.0 kB
60. Case Study - Loading the 'absenteeism_module'/1.2 model.original
1.0 kB
27. Python - Python Functions/4.1 0.6.4 Using a Function in another Function - Lecture_Py3.ipynb
1.0 kB
60. Case Study - Loading the 'absenteeism_module'/4. Exporting the Obtained Data Set as a .csv.html
998 Bytes
60. Case Study - Loading the 'absenteeism_module'/4.1 Absenteeism Exercise - Deploying the 'absenteeism_module'.ipynb
973 Bytes
24. Python - Basic Python Syntax/12.2 Structure Your Code with Indentation - Exercise_Py3.ipynb
956 Bytes
32/8.3 1.01. Simple linear regression.csv
922 Bytes
34/3.3 1.01. Simple linear regression.csv
922 Bytes
34/4.1 1.01. Simple linear regression.csv
922 Bytes
34/6.3 1.01. Simple linear regression.csv
922 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/33. A Note on Exporting Your Data as a .csv File.html
883 Bytes
27. Python - Python Functions/1.1 Defining a Function in Python - Lecture_Py3.ipynb
868 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/8. EXERCISE - Dropping a Column from a DataFrame in Python.html
866 Bytes
35/3. A Note on Multicollinearity.html
849 Bytes
24. Python - Basic Python Syntax/3.1 The Double Equality Sign - Exercise_Py3.ipynb
838 Bytes
26. Python - Conditional Statements/5.1 A Note on Boolean Values - Lecture_Py3.ipynb
791 Bytes
24. Python - Basic Python Syntax/9.1 Line Continuation - Lecture_Py3.ipynb
779 Bytes
34/5. A Note on Normalization.html
733 Bytes
35/7. Dummy Variables - Exercise.html
713 Bytes
53. Appendix Deep Learning - TensorFlow 1 Introduction/1. READ ME!!!!.html
564 Bytes
61. Case Study - Analyzing the Predicted Outputs in Tableau/5. EXERCISE - Transportation Expense vs Probability.html
553 Bytes
45/9. Backpropagation - A Peek into the Mathematics of Optimization.html
539 Bytes
15. Statistics - Descriptive Statistics/23. Variance Exercise.html
522 Bytes
60. Case Study - Loading the 'absenteeism_module'/1. Are You Sure You're All Set.html
519 Bytes
35/9. Linear Regression - Exercise.html
503 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
471 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/12. Business Case Final Exercise.html
439 Bytes
51. Deep Learning - Business Case Example/12. Business Case Final Exercise.html
433 Bytes
61. Case Study - Analyzing the Predicted Outputs in Tableau/3. EXERCISE - Reasons vs Probability.html
397 Bytes
61. Case Study - Analyzing the Predicted Outputs in Tableau/1. EXERCISE - Age vs Probability.html
385 Bytes
55. Appendix Deep Learning - TensorFlow 1 Business Case/5. Business Case Preprocessing Exercise.html
383 Bytes
34/11. A Note on Calculation of P-values with sklearn.html
372 Bytes
51. Deep Learning - Business Case Example/5. Business Case Preprocessing the Data - Exercise.html
370 Bytes
36. Advanced Statistical Methods - Logistic Regression/15.1 2.03. Test dataset.csv
322 Bytes
59/15. EXERCISE - Saving the Model (and Scaler).html
284 Bytes
38. Advanced Statistical Methods - K-Means Clustering/11.1 3.12. Example.csv
283 Bytes
39. Advanced Statistical Methods - Other Types of Clustering/3.3 Country clusters standardized.csv
244 Bytes
59/11.1 Logistic Regression prior to Backward Elimination.html
226 Bytes
59/9.1 Logistic Regression prior to Custom Scaler.html
219 Bytes
59/15.1 Logistic Regression with Comments.html
210 Bytes
38. Advanced Statistical Methods - K-Means Clustering/2.3 3.01. Country clusters.csv
200 Bytes
59/15.2 Logistic Regression.html
196 Bytes
51. Deep Learning - Business Case Example/10. Setting an Early Stopping Mechanism - Exercise.html
192 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/18. EXERCISE - Using .concat() in Python.html
189 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
167 Bytes
10. Probability - Combinatorics/10. Solving Variations without Repetition.html
165 Bytes
10. Probability - Combinatorics/12. Solving Combinations.html
165 Bytes
10. Probability - Combinatorics/14. Symmetry of Combinations.html
165 Bytes
10. Probability - Combinatorics/16. Solving Combinations with Separate Sample Spaces.html
165 Bytes
10. Probability - Combinatorics/18. Combinatorics in Real-Life The Lottery.html
165 Bytes
10. Probability - Combinatorics/2. Fundamentals of Combinatorics.html
165 Bytes
10. Probability - Combinatorics/4. Permutations and How to Use Them.html
165 Bytes
10. Probability - Combinatorics/6. Simple Operations with Factorials.html
165 Bytes
10. Probability - Combinatorics/8. Solving Variations with Repetition.html
165 Bytes
11. Probability - Bayesian Inference/10. Mutually Exclusive Sets.html
165 Bytes
11. Probability - Bayesian Inference/12. Dependence and Independence of Sets.html
165 Bytes
11. Probability - Bayesian Inference/14. The Conditional Probability Formula.html
165 Bytes
11. Probability - Bayesian Inference/17. The Additive Rule.html
165 Bytes
11. Probability - Bayesian Inference/19. The Multiplication Law.html
165 Bytes
11. Probability - Bayesian Inference/2. Sets and Events.html
165 Bytes
11. Probability - Bayesian Inference/21. Bayes' Law.html
165 Bytes
11. Probability - Bayesian Inference/4. Ways Sets Can Interact.html
165 Bytes
11. Probability - Bayesian Inference/6. Intersection of Sets.html
165 Bytes
11. Probability - Bayesian Inference/8. Union of Sets.html
165 Bytes
12. Probability - Distributions/10. Discrete Distributions The Bernoulli Distribution.html
165 Bytes
12. Probability - Distributions/12. Discrete Distributions The Binomial Distribution.html
165 Bytes
12. Probability - Distributions/14. Discrete Distributions The Poisson Distribution.html
165 Bytes
12. Probability - Distributions/16. Characteristics of Continuous Distributions.html
165 Bytes
12. Probability - Distributions/18. Continuous Distributions The Normal Distribution.html
165 Bytes
12. Probability - Distributions/2. Fundamentals of Probability Distributions.html
165 Bytes
12. Probability - Distributions/20. Continuous Distributions The Standard Normal Distribution.html
165 Bytes
12. Probability - Distributions/22. Continuous Distributions The Students' T Distribution.html
165 Bytes
12. Probability - Distributions/24. Continuous Distributions The Chi-Squared Distribution.html
165 Bytes
12. Probability - Distributions/26. Continuous Distributions The Exponential Distribution.html
165 Bytes
12. Probability - Distributions/28. Continuous Distributions The Logistic Distribution.html
165 Bytes
12. Probability - Distributions/4. Types of Probability Distributions.html
165 Bytes
12. Probability - Distributions/6. Characteristics of Discrete Distributions.html
165 Bytes
12. Probability - Distributions/8. Discrete Distributions The Uniform Distribution.html
165 Bytes
14. Part 3 Statistics/2. Population and Sample.html
165 Bytes
15. Statistics - Descriptive Statistics/12. The Histogram.html
165 Bytes
15. Statistics - Descriptive Statistics/15. Cross Tables and Scatter Plots.html
165 Bytes
15. Statistics - Descriptive Statistics/2. Types of Data.html
165 Bytes
15. Statistics - Descriptive Statistics/20. Skewness.html
165 Bytes
15. Statistics - Descriptive Statistics/25. Standard Deviation.html
165 Bytes
15. Statistics - Descriptive Statistics/28. Covariance.html
165 Bytes
15. Statistics - Descriptive Statistics/31. Correlation.html
165 Bytes
15. Statistics - Descriptive Statistics/4. Levels of Measurement.html
165 Bytes
15. Statistics - Descriptive Statistics/6. Categorical Variables - Visualization Techniques.html
165 Bytes
15. Statistics - Descriptive Statistics/9. Numerical Variables - Frequency Distribution Table.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/10. Central Limit Theorem.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/12. Standard Error.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/14. Estimators and Estimates.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/3. What is a Distribution.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/5. The Normal Distribution.html
165 Bytes
17. Statistics - Inferential Statistics Fundamentals/7. The Standard Normal Distribution.html
165 Bytes
18/11. Margin of Error.html
165 Bytes
18/2. What are Confidence Intervals.html
165 Bytes
18/7. Student's T Distribution.html
165 Bytes
2/10. A Breakdown of our Data Science Infographic.html
165 Bytes
2/2. Data Science and Business Buzzwords Why are there so Many.html
165 Bytes
2/4. What is the difference between Analysis and Analytics.html
165 Bytes
2/6. Business Analytics, Data Analytics, and Data Science An Introduction.html
165 Bytes
2/8. Continuing with BI, ML, and AI.html
165 Bytes
20. Statistics - Hypothesis Testing/11. p-value.html
165 Bytes
20. Statistics - Hypothesis Testing/19. Test for the mean. Independent Samples (Part 2).html
165 Bytes
20. Statistics - Hypothesis Testing/3. Null vs Alternative Hypothesis.html
165 Bytes
20. Statistics - Hypothesis Testing/5. Rejection Region and Significance Level.html
165 Bytes
20. Statistics - Hypothesis Testing/7. Type I Error and Type II Error.html
165 Bytes
22. Part 4 Introduction to Python/10. Jupyter's Interface.html
165 Bytes
22. Part 4 Introduction to Python/2. Introduction to Programming.html
165 Bytes
22. Part 4 Introduction to Python/4. Why Python.html
165 Bytes
22. Part 4 Introduction to Python/6. Why Jupyter.html
165 Bytes
23. Python - Variables and Data Types/2. Variables.html
165 Bytes
23. Python - Variables and Data Types/4. Numbers and Boolean Values in Python.html
165 Bytes
23. Python - Variables and Data Types/6. Python Strings.html
165 Bytes
24. Python - Basic Python Syntax/11. Indexing Elements.html
165 Bytes
24. Python - Basic Python Syntax/13. Structuring with Indentation.html
165 Bytes
24. Python - Basic Python Syntax/2. Using Arithmetic Operators in Python.html
165 Bytes
24. Python - Basic Python Syntax/4. The Double Equality Sign.html
165 Bytes
24. Python - Basic Python Syntax/6. How to Reassign Values.html
165 Bytes
24. Python - Basic Python Syntax/8. Add Comments.html
165 Bytes
25. Python - Other Python Operators/2. Comparison Operators.html
165 Bytes
25. Python - Other Python Operators/4. Logical and Identity Operators.html
165 Bytes
26. Python - Conditional Statements/2. The IF Statement.html
165 Bytes
26. Python - Conditional Statements/6. A Note on Boolean Values.html
165 Bytes
27. Python - Python Functions/8. Python Functions.html
165 Bytes
28. Python - Sequences/2. Lists.html
165 Bytes
28. Python - Sequences/4. Using Methods.html
165 Bytes
28. Python - Sequences/8. Dictionaries.html
165 Bytes
29. Python - Iterations/2. For Loops.html
165 Bytes
29. Python - Iterations/5. Lists with the range() Function.html
165 Bytes
3/2. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.html
165 Bytes
30. Python - Advanced Python Tools/2. Object Oriented Programming.html
165 Bytes
30. Python - Advanced Python Tools/4. Modules and Packages.html
165 Bytes
30. Python - Advanced Python Tools/6. What is the Standard Library.html
165 Bytes
30. Python - Advanced Python Tools/8. Importing Modules in Python.html
165 Bytes
31. Part 5 Advanced Statistical Methods in Python/2. Introduction to Regression Analysis.html
165 Bytes
32/12. How to Interpret the Regression Table.html
165 Bytes
32/14. Decomposition of Variability.html
165 Bytes
32/16. What is the OLS.html
165 Bytes
32/18. R-Squared.html
165 Bytes
32/2. The Linear Regression Model.html
165 Bytes
32/4. Correlation vs Regression.html
165 Bytes
32/6. Geometrical Representation of the Linear Regression Model.html
165 Bytes
33/10. A1 Linearity.html
165 Bytes
33/12. A2 No Endogeneity.html
165 Bytes
33/15. A4 No autocorrelation.html
165 Bytes
33/17. A5 No Multicollinearity.html
165 Bytes
33/2. Multiple Linear Regression.html
165 Bytes
33/4. Adjusted R-Squared.html
165 Bytes
33/8. OLS Assumptions.html
165 Bytes
4. The Field of Data Science - The Benefits of Each Discipline/2. The Reason Behind These Disciplines.html
165 Bytes
40. Part 6 Mathematics/11. Addition and Subtraction of Matrices.html
165 Bytes
40. Part 6 Mathematics/2. What is a Matrix.html
165 Bytes
40. Part 6 Mathematics/4. Scalars and Vectors.html
165 Bytes
40. Part 6 Mathematics/6. Linear Algebra and Geometry.html
165 Bytes
40. Part 6 Mathematics/9. What is a Tensor.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/10. The Linear Model with Multiple Inputs.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/12. The Linear model with Multiple Inputs and Multiple Outputs.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/14. Graphical Representation of Simple Neural Networks.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/16. What is the Objective Function.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/18. Common Objective Functions L2-norm Loss.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/2. Introduction to Neural Networks.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/20. Common Objective Functions Cross-Entropy Loss.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/22. Optimization Algorithm 1-Parameter Gradient Descent.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/24. Optimization Algorithm n-Parameter Gradient Descent.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/4. Training the Model.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/6. Types of Machine Learning.html
165 Bytes
42. Deep Learning - Introduction to Neural Networks/8. The Linear Model.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/11. Techniques for Working with Traditional Methods.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/14. Machine Learning (ML) Techniques.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/16. Types of Machine Learning.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/18. Real Life Examples of Machine Learning (ML).html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/2. Techniques for Working with Traditional Data.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/5. Techniques for Working with Big Data.html
165 Bytes
5. The Field of Data Science - Popular Data Science Techniques/8. Business Intelligence (BI) Techniques.html
165 Bytes
56. Software Integration/10. Software Integration - Explained.html
165 Bytes
56. Software Integration/2. What are Data, Servers, Clients, Requests, and Responses.html
165 Bytes
56. Software Integration/4. What are Data Connectivity, APIs, and Endpoints.html
165 Bytes
56. Software Integration/6. Taking a Closer Look at APIs.html
165 Bytes
56. Software Integration/8. Communication between Software Products through Text Files.html
165 Bytes
57. Case Study - What's Next in the Course/4. Introducing the Data Set.html
165 Bytes
6. The Field of Data Science - Popular Data Science Tools/2. Necessary Programming Languages and Software Used in Data Science.html
165 Bytes
7. The Field of Data Science - Careers in Data Science/2. Finding the Job - What to Expect and What to Look for.html
165 Bytes
8. The Field of Data Science - Debunking Common Misconceptions/2. Debunking Common Misconceptions.html
165 Bytes
9. Part 2 Probability/2. The Basic Probability Formula.html
165 Bytes
9. Part 2 Probability/4. Computing Expected Values.html
165 Bytes
9. Part 2 Probability/6. Frequency.html
165 Bytes
9. Part 2 Probability/8. Events and Their Complements.html
165 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/19. SOLUTION - Using .concat() in Python.html
142 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html
137 Bytes
1. Part 1 Introduction/3.1 Download all resources.html
134 Bytes
35/4.3 sklearn - Linear Regression - Practical Example (Part 3).html
134 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/12. EXERCISE - Obtaining Dummies from a Single Feature.html
129 Bytes
[Tutorialsplanet.NET].url
128 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html
117 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/13. SOLUTION - Obtaining Dummies from a Single Feature.html
116 Bytes
58. Case Study - Preprocessing the 'Absenteeism_data'/9. SOLUTION - Dropping a Column from a DataFrame in Python.html
113 Bytes
36. Advanced Statistical Methods - Logistic Regression/11. Binary Predictors in a Logistic Regression - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/13. Calculating the Accuracy of the Model.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/16. Testing the Model - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/5. Building a Logistic Regression - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/8. Understanding Logistic Regression Tables - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/3. A Simple Example of Clustering - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/5. Clustering Categorical Data - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/7. How to Choose the Number of Clusters - Exercise.html
87 Bytes
15. Statistics - Descriptive Statistics/10. Numerical Variables Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/13. Histogram Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/16. Cross Tables and Scatter Plots Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/18. Mean, Median and Mode Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/21. Skewness Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/26. Standard Deviation and Coefficient of Variation Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/29. Covariance Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/32. Correlation Coefficient Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/7. Categorical Variables Exercise.html
81 Bytes
16. Statistics - Practical Example Descriptive Statistics/2. Practical Example Descriptive Statistics Exercise.html
81 Bytes
17. Statistics - Inferential Statistics Fundamentals/8. The Standard Normal Distribution Exercise.html
81 Bytes
18/13. Confidence intervals. Two means. Dependent samples Exercise.html
81 Bytes
18/15. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
81 Bytes
18/17. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
81 Bytes
18/4. Confidence Intervals; Population Variance Known; Z-score; Exercise.html
81 Bytes
18/9. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
81 Bytes
19. Statistics - Practical Example Inferential Statistics/2. Practical Example Inferential Statistics Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/13. Test for the Mean. Population Variance Unknown Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/15. Test for the Mean. Dependent Samples Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/17. Test for the mean. Independent Samples (Part 1). Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/20. Test for the mean. Independent Samples (Part 2). Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/9. Test for the Mean. Population Variance Known Exercise.html
81 Bytes
21. Statistics - Practical Example Hypothesis Testing/2. Practical Example Hypothesis Testing Exercise.html
81 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/5. MNIST Preprocess the Data - Scale the Test Data - Exercise.html
79 Bytes
50. Deep Learning - Classifying on the MNIST Dataset/7. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html
79 Bytes
51. Deep Learning - Business Case Example/7. Business Case Load the Preprocessed Data - Exercise.html
79 Bytes
33/19. Dealing with Categorical Data - Dummy Variables.html
76 Bytes
33/5. Multiple Linear Regression Exercise.html
76 Bytes
34/13. Multiple Linear Regression - Exercise.html
76 Bytes
34/17. Feature Scaling (Standardization) - Exercise.html
76 Bytes
34/6. Simple Linear Regression with sklearn - Exercise.html
76 Bytes
34/9. Calculating the Adjusted R-Squared in sklearn - Exercise.html
76 Bytes
35/5. Dummies and Variance Inflation Factor - Exercise.html
76 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>